Using Evolutionary Computation to Find Parameters that Promote Egalitarian Major Evolutionary Transitions

被引:0
|
作者
Foreback, Max [1 ]
Leither, Sydney [1 ]
Dolson, Emily [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
来源
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION | 2023年
基金
美国国家科学基金会;
关键词
biology; simulation optimization; artificial life; genetic algorithms; noisy optimization;
D O I
10.1145/3583133.3590704
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary transitions, where replicating units combine to form more complex units, are a major source of the complexity found in nature. In this paper we aim to find conditions that promote egalitarian major transitions in a digital artificial ecology. We identify major transitions in this context by observing changes in fitness across different levels of organization. Fitness increases primarily at the community level suggest the occurrence of major transitions. We employ a genetic algorithm using lexicase selection to find regions of parameter space that promote community-level fitness increases. This approach successfully finds multiple ecological community structures that appear to support major transitions. These results illustrate the power of evolutionary computation for exploring the parameter space of complex simulations and push us closer to an understanding of the factors that lead to egalitarian major transitions.
引用
收藏
页码:135 / 138
页数:4
相关论文
共 50 条
  • [41] Using Evolutionary Computation on GPS Position Correction
    Lin, Jung Yi
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [42] Using Evolutionary Computation to Improve SVM Classification
    Kamath, Uday
    Shehu, Amarda
    De Jong, Kenneth
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [43] Using Evolutionary Computation to Improve Mutation Testing
    Delgado-Perez, Pedro
    Medina-Bulol, Inmaculada
    Merayo, Mercedes G.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 381 - 391
  • [44] A design for cellular evolutionary computation by using bacteria
    Wakabayashi K.
    Yamamura M.
    Natural Computing, 2005, 4 (3) : 275 - 292
  • [45] Medical data mining using evolutionary computation
    Ngan, PS
    Wong, ML
    Lam, W
    Leung, KS
    Cheng, JCY
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 1999, 16 (01) : 73 - 96
  • [46] Optimizing a data warehouse using evolutionary computation
    Osinski, M
    ADVANCES IN WEB INTELLIGENCE, PROCEEDINGS, 2005, 3528 : 355 - 360
  • [48] Prediction of Drifter Trajectory Using Evolutionary Computation
    Nam, Yong-Wook
    Kim, Yong-Hyuk
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [49] Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations
    Robin, Amanda N.
    Denton, Kaleda K.
    Horna Lowell, Eva S.
    Dulay, Tanner
    Ebrahimi, Saba
    Johnson, Gina C.
    Mai, Davis
    O'Fallon, Sean
    Philson, Conner S.
    Speck, Hayden P.
    Zhang, Xinhui Paige
    Nonacs, Peter
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2021, 09
  • [50] Using evolutionary computation tools in explanation facilities
    Eberhart, RC
    INTERNATIONAL JOURNAL OF EXPERT SYSTEMS, 1995, 8 (03): : 277 - 285