Using Evolutionary Computation to Find Parameters that Promote Egalitarian Major Evolutionary Transitions

被引:0
|
作者
Foreback, Max [1 ]
Leither, Sydney [1 ]
Dolson, Emily [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
来源
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION | 2023年
基金
美国国家科学基金会;
关键词
biology; simulation optimization; artificial life; genetic algorithms; noisy optimization;
D O I
10.1145/3583133.3590704
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary transitions, where replicating units combine to form more complex units, are a major source of the complexity found in nature. In this paper we aim to find conditions that promote egalitarian major transitions in a digital artificial ecology. We identify major transitions in this context by observing changes in fitness across different levels of organization. Fitness increases primarily at the community level suggest the occurrence of major transitions. We employ a genetic algorithm using lexicase selection to find regions of parameter space that promote community-level fitness increases. This approach successfully finds multiple ecological community structures that appear to support major transitions. These results illustrate the power of evolutionary computation for exploring the parameter space of complex simulations and push us closer to an understanding of the factors that lead to egalitarian major transitions.
引用
收藏
页码:135 / 138
页数:4
相关论文
共 50 条
  • [31] Using Evolutionary Algorithms to Find the Melody of a Musical Piece
    Alba, Enrique
    Camero, Andres
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2016, 2016, 9868 : 321 - 330
  • [32] A design for cellular evolutionary computation by using bacteria
    Wakabayashi, K
    Yamamura, M
    DNA COMPUTING, 2005, 3384 : 389 - 398
  • [33] Optimizing Segment Routing using Evolutionary Computation
    Pereira, Victor
    Rocha, Miguel
    Sousa, Pedro
    14TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC 2017) / 12TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC 2017) / AFFILIATED WORKSHOPS, 2017, 110 : 312 - 319
  • [34] Synthesizing feature agents using evolutionary computation
    Bhanu, B
    Lin, YQ
    PATTERN RECOGNITION LETTERS, 2004, 25 (13) : 1519 - 1531
  • [35] Experimental interferogram analysis using evolutionary computation
    Sánchez-Escobar, JJ
    Magaña, PA
    Vázquez-Montiel, S
    RIAO/OPTILAS 2004: 5TH IBEROAMERICAN MEETING ON OPTICS AND 8TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, PTS 1-3: ICO REGIONAL MEETING, 2004, 5622 : 580 - 584
  • [36] Strategic group identification using evolutionary computation
    Martinez-Torres, M. R.
    Toral-Marin, S. L.
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (07) : 4948 - 4954
  • [37] Distributed Computation using Evolutionary Consciousness : An Approach
    Susmit Bagchi
    International Journal of Computational Intelligence Systems, 2015, 8 : 928 - 942
  • [38] Color image denoising using evolutionary computation
    Lukac, R
    Plataniotis, KN
    Venetsanopoulos, AN
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2005, 15 (05) : 236 - 251
  • [39] Adaptive Information Filtering using evolutionary computation
    Tauritz, DR
    Kok, JN
    Sprinkhuizen-Kuyper, IG
    INFORMATION SCIENCES, 2000, 122 (2-4) : 121 - 140
  • [40] Airline Network Optimization Using Evolutionary Computation
    Inoue, Hiroki
    Kato, Yasuhiko
    Sakagami, Tomoya
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2013, 96 (11) : 16 - 25