Note on minimization of quasi M#-convex functions

被引:0
|
作者
Murota, Kazuo [1 ,2 ]
Shioura, Akiyoshi [3 ]
机构
[1] Inst Stat Math, Tokyo 1908562, Japan
[2] Tokyo Metropolitan Univ, Fac Econ & Business Adm, Tokyo 1920397, Japan
[3] Tokyo Inst Technol, Dept Ind Engn & Econ, Tokyo 1528550, Japan
基金
日本学术振兴会;
关键词
Discrete convexity; Quasi convex function; Minimization; SCALING ALGORITHMS;
D O I
10.1007/s13160-023-00633-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of discrete quasi convex functions called semi-strictly quasi M-#-convex functions, we investigate fundamental issues relating to minimization, such as optimality condition by local optimality, minimizer cut property, geodesic property, and proximity property. Emphasis is put on comparisons with (usual) M-#-convex functions. The same optimality condition and a weaker form of the minimizer cut property hold for semi-strictly quasi M-#-convex functions, while geodesic property and proximity property fail.
引用
收藏
页码:857 / 880
页数:24
相关论文
共 50 条
  • [11] A NOTE ON CONVEX AND BAZILEVIC FUNCTIONS
    NUNOKAWA, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (02) : 332 - &
  • [12] A note on geometrically convex functions
    Muhamet Emin Özdemir
    Çetin Yildiz
    Mustafa Gürbüz
    Journal of Inequalities and Applications, 2014
  • [13] A note on generalized convex functions
    Syed Zaheer Ullah
    Muhammad Adil Khan
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2019
  • [14] A note on generalized convex functions
    Ullah, Syed Zaheer
    Adil Khan, Muhammad
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [15] A note on geometrically convex functions
    Ozdemir, Muhamet Emin
    Yildiz, Cetin
    Gurbuz, Mustafa
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [16] Minimization of an M-convex function
    Shioura, A
    DISCRETE APPLIED MATHEMATICS, 1998, 84 (1-3) : 215 - 220
  • [18] THE UNCONDITIONAL MINIMIZATION OF NON-CONVEX FUNCTIONS
    BEREZNEV, VA
    KARMANOV, VG
    TRETYAKOV, AA
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (11-12): : 101 - 104
  • [19] Generic convergence of minimization methods for convex functions
    Reich, S
    Zaslavski, AJ
    FIXED POINT THEORY AND APPLICATIONS, VOL 2, 2001, : 73 - 88
  • [20] MINIMIZATION OF VECTOR-VALUED CONVEX FUNCTIONS
    Chen, Yuqing
    Cho, Yeol Je
    Kim, Jong Kyu
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (10) : 2053 - 2058