A note on generalized convex functions

被引:0
|
作者
Syed Zaheer Ullah
Muhammad Adil Khan
Yu-Ming Chu
机构
[1] University of Peshawar,Department of Mathematics
[2] Huzhou University,Department of Mathematics
[3] Changsha University of Science and Technology,School of Mathematics and Statistics
关键词
Convex function; Coordinate convex function; -convex function; Coordinate ; -convex function; 26D15; 26A51; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate (η1,η2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\eta _{1}, \eta _{2})$\end{document}-convex function and establish its Hermite–Hadamard type inequality.
引用
收藏
相关论文
共 50 条