Geometric Positivity of the Fusion Products of Unitary Vertex Operator Algebra Modules

被引:1
|
作者
Gui, Bin [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
关键词
TENSOR PRODUCT; CATEGORIES; INVARIANCE; BLOCKS; TRACE;
D O I
10.1007/s00220-024-04959-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A unitary and strongly rational vertex operator algebra (VOA) V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is called strongly unitary if all irreducible V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-modules are unitarizable. A strongly unitary VOA V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is called completely unitary if for each unitary V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-modules W1,W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1,{\mathbb {W}}_2$$\end{document} the canonical non-degenerate Hermitian form on the fusion product W1 boxed times W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1\boxtimes {\mathbb {W}}_2$$\end{document} is positive. It is known that if V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is completely unitary, then the modular category Modu(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Mod}<^>\textrm{u}({\mathbb {V}})$$\end{document} of unitary V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-modules is unitary (Gui in Commun Math Phys 372(3):893-950, 2019), and all simple VOA extensions of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} are automatically unitary and moreover completely unitary (Gui in Int Math Res Not 2022(10):7550-7614, 2022; Carpi et al. in Commun Math Phys 1-44, 2023). In this paper, we give a geometric characterization of the positivity of the Hermitian product on W1 boxed times W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1\boxtimes {\mathbb {W}}_2$$\end{document}, which helps us prove that the positivity is always true when W1 boxed times W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1\boxtimes {\mathbb {W}}_2$$\end{document} is an irreducible and unitarizable V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-module. We give several applications: (1) We show that if V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is a unitary (strongly rational) holomorphic VOA with a finite cyclic unitary automorphism group G, and if VG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}<^>G$$\end{document} is strongly unitary, then VG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}<^>G$$\end{document} is completely unitary. This result applies to the cyclic permutation orbifolds of unitary holomophic VOAs. (2) We show that if V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is unitary and strongly rational, and if U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {U}}$$\end{document} is a simple current extension which is unitarizable as a V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-module, then U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {U}}$$\end{document} is a unitary VOA.
引用
收藏
页数:65
相关论文
共 50 条
  • [41] The level one Zhu algebra for the Virasoro vertex operator algebra
    Barron, Katrina
    Vander Werf, Nathan
    Yang, Jinwei
    VERTEX OPERATOR ALGEBRAS, NUMBER THEORY AND RELATED TOPICS, 2020, 753 : 17 - 43
  • [42] GEOMETRIC INTERPRETATION OF THE STRING VERTEX OPERATOR
    ARATYN, H
    INGERMANSON, R
    PHYSICAL REVIEW LETTERS, 1988, 61 (18) : 2050 - 2053
  • [43] A THEORY OF TENSOR-PRODUCTS FOR MODULE CATEGORIES FOR A VERTEX OPERATOR ALGEBRA .3.
    HUANG, YZ
    LEPOWSKY, J
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 100 (1-3) : 141 - 171
  • [44] A quasi-Hopf algebra for the triplet vertex operator algebra
    Creutzig, Thomas
    Gainutdinov, Azat M.
    Runkel, Ingo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (03)
  • [45] The Level One Zhu Algebra for the Heisenberg Vertex Operator Algebra
    Barron, Katrina
    Vander Werf, Nathan
    Yang, Jinwei
    AFFINE, VERTEX AND W-ALGEBRAS, 2019, 37 : 37 - 64
  • [46] Tensor product of modules over a vertex algebra
    Liberati, Jose, I
    ADVANCES IN MATHEMATICS, 2018, 330 : 1160 - 1208
  • [47] Constructing tensor products of modules for C 2-cofinite vertex operator superalgebras
    Han, Jianzhi
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (03) : 477 - 494
  • [48] Constructing tensor products of modules for C2-cofinite vertex operator superalgebras
    Jianzhi Han
    Frontiers of Mathematics in China, 2014, 9 : 477 - 494
  • [49] Foliation of a space associated to vertex operator algebra
    Zuevsky, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (29):
  • [50] A generalized vertex operator algebra for Heisenberg intertwiners
    Tuite, Michael P.
    Zuevsky, Alexander
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (06) : 1442 - 1453