Geometric Positivity of the Fusion Products of Unitary Vertex Operator Algebra Modules

被引:1
|
作者
Gui, Bin [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
关键词
TENSOR PRODUCT; CATEGORIES; INVARIANCE; BLOCKS; TRACE;
D O I
10.1007/s00220-024-04959-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A unitary and strongly rational vertex operator algebra (VOA) V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is called strongly unitary if all irreducible V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-modules are unitarizable. A strongly unitary VOA V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is called completely unitary if for each unitary V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-modules W1,W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1,{\mathbb {W}}_2$$\end{document} the canonical non-degenerate Hermitian form on the fusion product W1 boxed times W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1\boxtimes {\mathbb {W}}_2$$\end{document} is positive. It is known that if V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is completely unitary, then the modular category Modu(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Mod}<^>\textrm{u}({\mathbb {V}})$$\end{document} of unitary V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-modules is unitary (Gui in Commun Math Phys 372(3):893-950, 2019), and all simple VOA extensions of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} are automatically unitary and moreover completely unitary (Gui in Int Math Res Not 2022(10):7550-7614, 2022; Carpi et al. in Commun Math Phys 1-44, 2023). In this paper, we give a geometric characterization of the positivity of the Hermitian product on W1 boxed times W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1\boxtimes {\mathbb {W}}_2$$\end{document}, which helps us prove that the positivity is always true when W1 boxed times W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1\boxtimes {\mathbb {W}}_2$$\end{document} is an irreducible and unitarizable V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-module. We give several applications: (1) We show that if V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is a unitary (strongly rational) holomorphic VOA with a finite cyclic unitary automorphism group G, and if VG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}<^>G$$\end{document} is strongly unitary, then VG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}<^>G$$\end{document} is completely unitary. This result applies to the cyclic permutation orbifolds of unitary holomophic VOAs. (2) We show that if V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is unitary and strongly rational, and if U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {U}}$$\end{document} is a simple current extension which is unitarizable as a V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-module, then U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {U}}$$\end{document} is a unitary VOA.
引用
收藏
页数:65
相关论文
共 50 条
  • [21] Fusion rules for the vertex operator algebra VL2A4
    Dong, Chongying
    Jiang, Cuipo
    Jiang, Qifen
    Jiao, Xiangyu
    Yu, Nina
    JOURNAL OF ALGEBRA, 2015, 423 : 476 - 505
  • [22] The radical of a vertex operator algebra
    Dong, C
    Li, H
    Mason, G
    Montague, PS
    MONSTER AND LIE ALGEBRAS, 1998, 7 : 17 - 25
  • [23] Simple restricted modules over the N=1 Ramond algebra as weak modules for vertex operator superalgebras
    Chen, Haibo
    JOURNAL OF ALGEBRA, 2023, 621 : 41 - 57
  • [24] On the unitary structures of vertex operator superalgebras
    Ai, Chunrui
    Lin, Xingjun
    JOURNAL OF ALGEBRA, 2017, 487 : 217 - 243
  • [25] Hom functor and the associativity of tensor products of modules for vertex operator algebras
    Dong, CY
    Li, HS
    Mason, G
    JOURNAL OF ALGEBRA, 1997, 188 (02) : 443 - 475
  • [26] Integral forms for tensor products of Virasoro vertex operator algebras and their modules
    Guo, Hongyan
    Zhao, Hongju
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (08)
  • [27] A hamming code vertex operator algebra and construction of vertex operator algebras
    Miyamoto, M
    JOURNAL OF ALGEBRA, 1999, 215 (02) : 509 - 530
  • [28] AUTOMORPHISM GROUP AND TWISTED MODULES OF THE TWISTED HEISENBERG-VIRASORO VERTEX OPERATOR ALGEBRA
    Guo, Hongyan
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (04): : 2673 - 2685
  • [29] Associating vertex algebras with the unitary Lie algebra
    Guo, Hongyan
    Wang, Qing
    JOURNAL OF ALGEBRA, 2015, 424 : 126 - 146
  • [30] LINEAR TRANSFORMATIONS IN UNITARY GEOMETRIC ALGEBRA
    SOBCZYK, G
    FOUNDATIONS OF PHYSICS, 1993, 23 (10) : 1375 - 1385