On nth order Euler polynomials of degree n that are Eisenstein

被引:1
|
作者
Filaseta, Michael [1 ]
Luckner, Thomas [2 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Flagler Coll, Dept Math, St Augustine, FL 32084 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2024年 / 35卷 / 01期
关键词
Bernoulli number; Eisenstein polynomial; Euler polynomial; Genoocchi number; Irreducible polynomial; GENOCCHI NUMBERS; CONGRUENCES;
D O I
10.1016/j.indag.2023.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For m an even positive integer and p an odd prime, we show that the generalized Euler polynomial mp (x) is in Eisenstein form with respect to p if and only if p does not divide m(2m - 1)Bm. As a consequence, we deduce that at least 1/3 of the generalized Euler polynomials En(n)(x) are in Eisenstein form with respect to a prime p dividing n and, hence, irreducible over Q. (c) 2023 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 86
页数:11
相关论文
共 50 条