On nth order Euler polynomials of degree n that are Eisenstein

被引:1
|
作者
Filaseta, Michael [1 ]
Luckner, Thomas [2 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Flagler Coll, Dept Math, St Augustine, FL 32084 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2024年 / 35卷 / 01期
关键词
Bernoulli number; Eisenstein polynomial; Euler polynomial; Genoocchi number; Irreducible polynomial; GENOCCHI NUMBERS; CONGRUENCES;
D O I
10.1016/j.indag.2023.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For m an even positive integer and p an odd prime, we show that the generalized Euler polynomial mp (x) is in Eisenstein form with respect to p if and only if p does not divide m(2m - 1)Bm. As a consequence, we deduce that at least 1/3 of the generalized Euler polynomials En(n)(x) are in Eisenstein form with respect to a prime p dividing n and, hence, irreducible over Q. (c) 2023 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 86
页数:11
相关论文
共 50 条
  • [11] On Eisenstein polynomials and zeta polynomials
    Miezaki, Tsuyoshi
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (10) : 4153 - 4160
  • [12] NTH-ORDER DERIVATIVES OF CERTAIN INVERSES AND THE BELL POLYNOMIALS
    SINGH, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (12): : 2307 - 2313
  • [13] On the Identities of Symmetry for the ζ-Euler Polynomials of Higher Order
    Kim, Taekyun
    Park, Kyoung Ho
    Hwang, Kyung-won
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [14] Szego transformations and Nth order associated polynomials on the unit circle
    Garza, L.
    Marcellan, F.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (10) : 1659 - 1671
  • [15] An Explicit Formula for the Euler Polynomials of Higher Order
    Luo, Qiu-Ming
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2009, 3 (01): : 53 - 58
  • [16] Some identities of degenerate q-Euler polynomials under the symmetry group of degree n
    Kim, Taekyun
    Dolgy, D. V.
    Jang, Lee-Chae
    Kwon, Hyuck-In
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4707 - 4712
  • [17] HIGHER-ORDER BERNOULLI, FROBENIUS-EULER AND EULER POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    Seo, Jongjin
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (01) : 147 - 155
  • [18] The generalized solutions of a certain nth order Cauchy-Euler equation
    Sangsuwan, Amornrat
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (02)
  • [19] THE NTH DEGREE
    WEINSTEIN, A
    CHEMISTRY & INDUSTRY, 1961, (38) : 1523 - 1523
  • [20] To the Nth Degree
    Gentleman, Darcy J.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (03) : 838 - 838