On nth order Euler polynomials of degree n that are Eisenstein

被引:1
|
作者
Filaseta, Michael [1 ]
Luckner, Thomas [2 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Flagler Coll, Dept Math, St Augustine, FL 32084 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2024年 / 35卷 / 01期
关键词
Bernoulli number; Eisenstein polynomial; Euler polynomial; Genoocchi number; Irreducible polynomial; GENOCCHI NUMBERS; CONGRUENCES;
D O I
10.1016/j.indag.2023.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For m an even positive integer and p an odd prime, we show that the generalized Euler polynomial mp (x) is in Eisenstein form with respect to p if and only if p does not divide m(2m - 1)Bm. As a consequence, we deduce that at least 1/3 of the generalized Euler polynomials En(n)(x) are in Eisenstein form with respect to a prime p dividing n and, hence, irreducible over Q. (c) 2023 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 86
页数:11
相关论文
共 50 条
  • [1] On nth order degree regular trees
    Henning, M. A.
    Swart, H. C.
    Indian Journal of Pure and Applied Mathematics, 26 (08):
  • [2] ON NTH ORDER DEGREE REGULAR TREES
    HENNING, MA
    SWART, HC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1995, 26 (08): : 777 - 786
  • [3] APPROXIMATE ROOTS OF NTH-ORDER POLYNOMIALS
    EISENBERG, L
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1965, AC10 (03) : 354 - +
  • [4] Higher order multivariable Nörlund Euler-Bernoulli polynomials
    Guo-dong L.
    Applied Mathematics and Mechanics, 2002, 23 (11) : 1348 - 1356
  • [5] Siegel Eisenstein series of degree n and Λ-adic Eisenstein series
    Takemori, Sho
    JOURNAL OF NUMBER THEORY, 2015, 149 : 105 - 138
  • [6] SYMMETRIC IDENTITIES FOR THE FULLY DEGENERATE BERNOULLI POLYNOMIALS AND DEGENERATE EULER POLYNOMIALS UNDER SYMMETRIC GROUP OF DEGREE n
    Kim, Taekyun
    Kwon, Hyuck-In
    Mansour, Toufik
    Rim, Seog-Hoon
    UTILITAS MATHEMATICA, 2017, 103 : 61 - 72
  • [7] Some identities of q-Euler polynomials under the symmetric group of degree n
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    Seo, Jong-Jin
    Dolgy, D. V.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1077 - 1082
  • [8] A study on a class of q-Euler polynomials under the symmetric group of degree n
    Araci, Serkan
    Duran, Ugur
    Acikgoz, Mehmet
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (08): : 5196 - 5201
  • [9] The Generalized Solutions of the nth Order Cauchy-Euler Equation
    Sangsuwan, Amornrat
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    Mirumbe, Ismail
    MATHEMATICS, 2019, 7 (10) : 932
  • [10] Large degree asymptotics of generalized Bernoulli and Euler polynomials
    Luis Lopez, Jose
    Temme, Nico M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 197 - 208