Hilbert space fragmentation in open quantum systems

被引:12
|
作者
Li, Yahui [1 ,2 ]
Sala, Pablo [3 ,4 ]
Pollmann, Frank [1 ,2 ]
机构
[1] Techn Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, D-80799 Munich, Germany
[3] CALTECH, Dept Phys, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
基金
欧洲研究理事会;
关键词
MANY-BODY LOCALIZATION; DECOHERENCE-FREE SUBSPACES; STATISTICAL-MECHANICS; THERMALIZATION; ENTANGLEMENT; TRANSITION; DRIVEN;
D O I
10.1103/PhysRevResearch.5.043239
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the phenomenon of Hilbert space fragmentation (HSF) in open quantum systems and find that it can stabilize highly entangled steady states. For concreteness, we consider the Temperley-Lieb model, which exhibits quantum HSF in an entangled basis, and investigate the Lindblad dynamics under two different couplings. First, we couple the system to a dephasing bath that reduces quantum fragmentation to a classical one with the resulting stationary state being separable. We observe that despite vanishing quantum correlations, classical correlations develop due to fluctuations of the remaining conserved quantities, which we show can be captured by a classical stochastic circuit evolution. Second, we use a coupling that preserves the quantum fragmentation structure. We derive a general expression for the steady state, which has a strong coherent memory of the initial state due to the extensive number of noncommuting conserved quantities. We then show that it is highly entangled as quantified by logarithmic negativity.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Quantum relative positioning in Hilbert space
    Giovannetti, V
    Fazio, R
    PHYSICAL REVIEW A, 2005, 72 (04):
  • [42] Hilbert space methods and quantum mechanics
    Applebaum, Dave
    MATHEMATICAL GAZETTE, 2010, 94 (531): : 571 - 571
  • [43] Hilbert space for quantum mechanics on superspace
    Coulembier, K.
    De Bie, H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (06)
  • [44] Quantum mechanics in an evolving Hilbert space
    Artacho, Emilio
    O'Regan, David D.
    PHYSICAL REVIEW B, 2017, 95 (11)
  • [45] Projection operator techniques and Hilbert space averaging in the quantum theory of nonequilibrium systems
    Gemmer, J.
    Breuer, H. -P.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 151 (1): : 1 - 12
  • [46] Projection operator techniques and Hilbert space averaging in the quantum theory of nonequilibrium systems
    J. Gemmer
    H.-P. Breuer
    The European Physical Journal Special Topics, 2007, 151 : 1 - 12
  • [47] Transport in open quantum systems: comparing classical and quantum phase space dynamics
    D. K. Ferry
    R. Akis
    R. Brunner
    R. Meisels
    F. Kuchar
    J. P. Bird
    Journal of Computational Electronics, 2008, 7 : 259 - 262
  • [48] Transport in open quantum systems: comparing classical and quantum phase space dynamics
    Ferry, D. K.
    Akis, R.
    Brunner, R.
    Meisels, R.
    Kuchar, F.
    Bird, J. P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (03) : 259 - 262
  • [49] Hilbert space fragmentation produces an effective attraction between fractons
    Feng, Xiaozhou
    Skinner, Brian
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [50] Towards space from Hilbert space: finding lattice structure in finite-dimensional quantum systems
    Jason Pollack
    Ashmeet Singh
    Quantum Studies: Mathematics and Foundations, 2019, 6 : 181 - 200