Hilbert space fragmentation in open quantum systems

被引:12
|
作者
Li, Yahui [1 ,2 ]
Sala, Pablo [3 ,4 ]
Pollmann, Frank [1 ,2 ]
机构
[1] Techn Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, D-80799 Munich, Germany
[3] CALTECH, Dept Phys, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
基金
欧洲研究理事会;
关键词
MANY-BODY LOCALIZATION; DECOHERENCE-FREE SUBSPACES; STATISTICAL-MECHANICS; THERMALIZATION; ENTANGLEMENT; TRANSITION; DRIVEN;
D O I
10.1103/PhysRevResearch.5.043239
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the phenomenon of Hilbert space fragmentation (HSF) in open quantum systems and find that it can stabilize highly entangled steady states. For concreteness, we consider the Temperley-Lieb model, which exhibits quantum HSF in an entangled basis, and investigate the Lindblad dynamics under two different couplings. First, we couple the system to a dephasing bath that reduces quantum fragmentation to a classical one with the resulting stationary state being separable. We observe that despite vanishing quantum correlations, classical correlations develop due to fluctuations of the remaining conserved quantities, which we show can be captured by a classical stochastic circuit evolution. Second, we use a coupling that preserves the quantum fragmentation structure. We derive a general expression for the steady state, which has a strong coherent memory of the initial state due to the extensive number of noncommuting conserved quantities. We then show that it is highly entangled as quantified by logarithmic negativity.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] On the Hilbert Space in Quantum Gravity
    Spaniol, Ednardo Paulo
    Gomes Amorim, Ronni Geraldo
    Ulhoa, Sergio Costa
    UNIVERSE, 2022, 8 (08)
  • [22] Consistent Treatment of Quantum Systems with a Time-Dependent Hilbert Space
    Mostafazadeh, Ali
    ENTROPY, 2024, 26 (04)
  • [23] On the control by electromagnetic fields of quantum systems with infinite dimensional Hilbert space
    E. Assémat
    T. Chambrion
    D. Sugny
    Journal of Mathematical Chemistry, 2015, 53 : 374 - 385
  • [24] Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and Designs
    Pilatowsky-Cameo, Saul
    Marvian, Iman
    Choi, Soonwon
    Ho, Wen Wei
    PHYSICAL REVIEW X, 2024, 14 (04):
  • [25] On the control by electromagnetic fields of quantum systems with infinite dimensional Hilbert space
    Assemat, E.
    Chambrion, T.
    Sugny, D.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 53 (01) : 374 - 385
  • [26] Frame representation of quantum systems with finite-dimensional Hilbert space
    Cotfas, Nicolae
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (39)
  • [27] Coherence generation, symmetry algebras, and Hilbert space fragmentation
    Andreadakis, Faidon
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [28] Minimal model for Hilbert space fragmentation with local constraints
    Mukherjee, Bhaskar
    Banerjee, Debasish
    Sengupta, K.
    Sen, Arnab
    PHYSICAL REVIEW B, 2021, 104 (15)
  • [29] Second quantization of open quantum systems in Liouville space
    Sukharnikov, Vladislav
    Chuchurka, Stasis
    Benediktovitch, Andrei
    Rohringer, Nina
    PHYSICAL REVIEW A, 2023, 107 (05)
  • [30] Exploring Hilbert-Space Fragmentation on a Superconducting Processor
    Wang, Yong-Yi
    Shi, Yun-Hao
    Sun, Zheng-Hang
    Chen, Chi-Tong
    Wang, Zheng-An
    Zhao, Kui
    Liu, Hao-Tian
    Ma, Wei-Guo
    Wang, Ziting
    Li, Hao
    Zhang, Jia-Chi
    Liu, Yu
    Deng, Cheng-Lin
    Li, Tian-Ming
    He, Yang
    Liu, Zheng-He
    Peng, Zhen-Yu
    Song, Xiaohui
    Xue, Guangming
    Yu, Haifeng
    Huang, Kaixuan
    Xiang, Zhongcheng
    Zheng, Dongning
    Xu, Kai
    Fan, Heng
    PRX QUANTUM, 2025, 6 (01):