A Case Study: Groundwater Level Forecasting of the Gyorae Area in Actual Practice on Jeju Island Using Deep-Learning Technique
被引:6
|
作者:
Kim, Deokhwan
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Civil Engn & Bldg Technol, Dept Hydro Sci & Engn Res, Goyang 10223, South KoreaKorea Inst Civil Engn & Bldg Technol, Dept Hydro Sci & Engn Res, Goyang 10223, South Korea
Kim, Deokhwan
[1
]
Jang, Cheolhee
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Civil Engn & Bldg Technol, Dept Hydro Sci & Engn Res, Goyang 10223, South KoreaKorea Inst Civil Engn & Bldg Technol, Dept Hydro Sci & Engn Res, Goyang 10223, South Korea
Jang, Cheolhee
[1
]
Choi, Jeonghyeon
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Civil Engn & Bldg Technol, Dept Hydro Sci & Engn Res, Goyang 10223, South KoreaKorea Inst Civil Engn & Bldg Technol, Dept Hydro Sci & Engn Res, Goyang 10223, South Korea
Choi, Jeonghyeon
[1
]
Kwak, Jaewon
论文数: 0引用数: 0
h-index: 0
机构:
Han River Flood Control Off, Minist Environm, Seoul 06501, South KoreaKorea Inst Civil Engn & Bldg Technol, Dept Hydro Sci & Engn Res, Goyang 10223, South Korea
Kwak, Jaewon
[2
]
机构:
[1] Korea Inst Civil Engn & Bldg Technol, Dept Hydro Sci & Engn Res, Goyang 10223, South Korea
[2] Han River Flood Control Off, Minist Environm, Seoul 06501, South Korea
As a significant portion of the available water resources in volcanic terrains such as Jeju Island are dependent on groundwater, reliable groundwater level forecasting is one of the important tasks for efficient water resource management. This study aims to propose deep-learning-based methods for groundwater level forecasting that can be utilized in actual management works and to assess their applicability. The study suggests practical forecasting methodologies through the Gyorae area of Jeju Island, where the groundwater level is highly volatile and unpredictable. To this end, the groundwater level data of the JH Gyorae-1 point and a total of 12 kinds of daily hydro-meteorological data from 2012 to 2021 were collected. Subsequently, five factors (i.e., mean wind speed, sun hours, evaporation, minimum temperature, and daily precipitation) were selected as hydro-meteorological data for groundwater level forecasting through cross-wavelet analysis between the collected hydro-meteorological data and groundwater level data. The study simulated the groundwater level of the JH Gyorae-1 point using the long short-term memory (LSTM) model, a representative deep-learning technique, with the selected data to show that the methodology is adequately applicable. In addition, for its better utilization in actual practice, the study suggests and analyzes (i) a derivatives-based groundwater level learning model which is defined as derivatives-based learning to forecast derivatives (gradients) of the groundwater level, not the target groundwater time series itself, and (ii) an ensemble forecasting methodology in which groundwater level forecasting is performed repetitively with short time intervals.
机构:
SKUAST K, Sch Agr Econ & Horti Business Management, Shalimar 190025, IndiaSKUAST K, Sch Agr Econ & Horti Business Management, Shalimar 190025, India
Malik, Irtiqa
Ahmed, Muneeb
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Delhi, Bharti Sch Telecom Technol, Dept Comp Sci & Engn, New Delhi 110016, IndiaSKUAST K, Sch Agr Econ & Horti Business Management, Shalimar 190025, India
Ahmed, Muneeb
论文数: 引用数:
h-index:
机构:
Gulzar, Yonis
Baba, Sajad Hassan
论文数: 0引用数: 0
h-index: 0
机构:
SKUAST K, Sch Agr Econ & Horti Business Management, Shalimar 190025, IndiaSKUAST K, Sch Agr Econ & Horti Business Management, Shalimar 190025, India
Baba, Sajad Hassan
论文数: 引用数:
h-index:
机构:
Mir, Mohammad Shuaib
论文数: 引用数:
h-index:
机构:
Soomro, Arjumand Bano
Sultan, Abid
论文数: 0引用数: 0
h-index: 0
机构:
SKUAST K, Sch Agr Econ & Horti Business Management, Shalimar 190025, IndiaSKUAST K, Sch Agr Econ & Horti Business Management, Shalimar 190025, India
Sultan, Abid
Elwasila, Osman
论文数: 0引用数: 0
h-index: 0
机构:
King Faisal Univ, Coll Business Adm, Dept Management Informat Syst, Al Hasa 31982, Saudi ArabiaSKUAST K, Sch Agr Econ & Horti Business Management, Shalimar 190025, India
机构:
China Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hubei, Wuhan, Peoples R ChinaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hubei, Wuhan, Peoples R China
Lin, Lei
Huang, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Branch, China Petr Logging Corp Ltd, Chongqing, Peoples R ChinaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hubei, Wuhan, Peoples R China
Huang, Hong
Zhang, Pengyun
论文数: 0引用数: 0
h-index: 0
机构:
Well tech RD Inst, China Oilfield Serv Ltd, Beijing, Peoples R ChinaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hubei, Wuhan, Peoples R China
Zhang, Pengyun
Yan, Weichao
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, MOE & Coll Marine Geosci, Frontiers Sci Ctr Deep Ocean Multispheres & Earth, Key Lab Submarine Geosci & Prospecting Tech, Qingdao, Peoples R China
Pilot Natl Lab Marine Sci & Technol Qingdao, Lab Marine Mineral Resources, Qingdao, Peoples R ChinaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hubei, Wuhan, Peoples R China
Yan, Weichao
Wei, Hao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hubei, Wuhan, Peoples R ChinaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hubei, Wuhan, Peoples R China
Wei, Hao
Liu, Hang
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Branch, China Petr Logging Corp Ltd, Chongqing, Peoples R ChinaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hubei, Wuhan, Peoples R China
Liu, Hang
Zhong, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hubei, Wuhan, Peoples R ChinaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hubei, Wuhan, Peoples R China