Multi-Step Ahead Probabilistic Forecasting of Daily Streamflow Using Bayesian Deep Learning: A Multiple Case Study

被引:14
|
作者
Ghobadi, Fatemeh [1 ]
Kang, Doosun [1 ]
机构
[1] Kyung Hee Univ, Dept Civil Engn, 1732 Deogyeong Daero, Yongin 17104, South Korea
关键词
Bayesian neural network; forecasting uncertainty; multi-step ahead forecasting; probabilistic streamflow forecasting; variational inference; NEURAL-NETWORKS; UNCERTAINTY; MODEL;
D O I
10.3390/w14223672
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent decades, natural calamities such as drought and flood have caused widespread economic and social damage. Climate change and rapid urbanization contribute to the occurrence of natural disasters. In addition, their destructive impact has been altered, posing significant challenges to the efficiency, equity, and sustainability of water resources allocation and management. Uncertainty estimation in hydrology is essential for water resources management. By quantifying the associated uncertainty of reliable hydrological forecasting, an efficient water resources management plan is obtained. Moreover, reliable forecasting provides significant future information to assist risk assessment. Currently, the majority of hydrological forecasts utilize deterministic approaches. Nevertheless, deterministic forecasting models cannot account for the intrinsic uncertainty of forecasted values. Using the Bayesian deep learning approach, this study developed a probabilistic forecasting model that covers the pertinent subproblem of univariate time series models for multi-step ahead daily streamflow forecasting to quantify epistemic and aleatory uncertainty. The new model implements Bayesian sampling in the Long short-term memory (LSTM) neural network by using variational inference to approximate the posterior distribution. The proposed method is verified with three case studies in the USA and three forecasting horizons. LSTM as a point forecasting neural network model and three probabilistic forecasting models, such as LSTM-BNN, BNN, and LSTM with Monte Carlo (MC) dropout (LSTM-MC), were applied for comparison with the proposed model. The results show that the proposed Bayesian long short-term memory (BLSTM) outperforms the other models in terms of forecasting reliability, sharpness, and overall performance. The results reveal that all probabilistic forecasting models outperformed the deterministic model with a lower RMSE value. Furthermore, the uncertainty estimation results show that BLSTM can handle data with higher variation and peak, particularly for long-term multi-step ahead streamflow forecasting, compared to other models.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Probabilistic multi-step ahead streamflow forecast based on deep learning
    Karimanzira, Divas
    Richter, Lucas
    Hilbring, Desiree
    Loedige, Michaela
    Vogl, Jonathan
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2024, 72 (06) : 518 - 527
  • [2] Multi-step ahead forecasting of daily reference evapotranspiration using deep learning
    Ferreira, Lucas Borges
    da Cunha, Fernando Franca
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 178
  • [3] Deep learning model on rates of change for multi-step ahead streamflow forecasting
    Tan, Woon Yang
    Lai, Sai Hin
    Pavitra, Kumar
    Teo, Fang Yenn
    El-Shafie, Ahmed
    [J]. JOURNAL OF HYDROINFORMATICS, 2023, 25 (05) : 1667 - 1689
  • [4] Multi-step ahead probabilistic forecasting of multiple hydrological variables for multiple stations
    Zhang, Zhendong
    Tang, Haihua
    Qin, Hui
    Luo, Bin
    Zhou, Chao
    Zhou, Huayan
    [J]. JOURNAL OF HYDROLOGY, 2023, 617
  • [5] Directed graph deep neural network for multi-step daily streamflow forecasting
    Liu, Yongqi
    Hou, Guibing
    Huang, Feng
    Qin, Hui
    Wang, Baohua
    Yi, Ling
    [J]. JOURNAL OF HYDROLOGY, 2022, 607
  • [6] Multi-step probabilistic forecasting model using deep learning parametrized distributions
    Serpell, Cristian
    Valle, Carlos
    Allende, Hector
    [J]. SOFT COMPUTING, 2023, 27 (14) : 9479 - 9500
  • [7] Multi-step probabilistic forecasting model using deep learning parametrized distributions
    Cristián Serpell
    Carlos Valle
    Héctor Allende
    [J]. Soft Computing, 2023, 27 : 9479 - 9500
  • [8] Multi-step Ahead Urban Water Demand Forecasting Using Deep Learning Models
    Sahoo B.B.
    Panigrahi B.
    Nanda T.
    Tiwari M.K.
    Sankalp S.
    [J]. SN Computer Science, 4 (6)
  • [9] Multi-step ahead forecasting of global solar radiation for arid zones using deep learning
    Chandola, Deeksha
    Gupta, Harsh
    Tikkiwal, Vinay Anand
    Bohra, Manoj Kumar
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 626 - 635
  • [10] Multi-step rainfall forecasting using deep learning approach
    Narejo, Sanam
    Jawaid, Muhammad Moazzam
    Talpur, Shahnawaz
    Baloch, Rizwan
    Pasero, Eros Gian Alessandro
    [J]. PEERJ COMPUTER SCIENCE, 2021,