Deep Learning-Based Hybrid Precoding for Terahertz Massive MIMO Communication With Beam Squint

被引:10
|
作者
Yuan, Qijiang [1 ,2 ]
Liu, Hui [3 ]
Xu, Mingfeng [3 ]
Wu, Yezeng [1 ,2 ]
Xiao, Lixia [1 ,2 ]
Jiang, Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Res Ctr 6G Mobile Commun, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] China Acad Informat & Commun Technol, Mobile Commun Innovat Ctr, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
Radio frequency; Precoding; Wideband; Antenna arrays; Estimation error; Channel estimation; Broadband antennas; THz; hybrid precoding; beam squint; massive MIMO; deep learning; SYSTEMS;
D O I
10.1109/LCOMM.2022.3211514
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, a wideband hybrid precoding network (WHPC-Net) based on deep learning is designed for Terahertz (THz) massive multiple input multiple output (MIMO) system in the face of beam squint. Firstly, the channel state information (CSI) is preprocessed by calculating the mean channel covariance matrix (MCCM). Next, the analog precoder can be calculated based on the analog precoding sub-network (APC-Net) using the information of the MCCM. Finally, the digital precoder will be obtained with the aid of the digital precoding subnetwork (DPC-Net), employing the related outputs of the APC-Net and the MCCM. Simulation results show that the proposed WHPC-Net is more robust to the beam squint over the existing traditional hybrid precoders. For the case of imperfect CSI, the proposed WHPC-Net even is capable of achieving a higher sum rate than the full-digital precoder based on singular value decomposition.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [31] Deep Learning for Channel Sensing and Hybrid Precoding in TDD Massive MIMO OFDM Systems
    Attiah, Kareem M.
    Sohrabi, Foad
    Yu, Wei
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 10839 - 10853
  • [32] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [33] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath Jr, Robert W.
    [J]. IEEE ACCESS, 2022, 10 : 125509 - 125525
  • [34] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath, Robert W.
    [J]. IEEE Access, 2022, 10 : 125509 - 125525
  • [35] Deep Learning-Based Channel Estimation for Massive MIMO Systems
    Chun, Chang-Jae
    Kang, Jae-Mo
    Kim, Il-Min
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (04) : 1228 - 1231
  • [36] On Deep Learning-based Massive MIMO Indoor User Localization
    Arnold, Maximilian
    Doerner, Sebastian
    Cammerer, Sebastian
    ten Brink, Stephan
    [J]. 2018 IEEE 19TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2018, : 256 - 260
  • [37] Beam squint compensation for hybrid precoding in millimetre-wave communication systems
    Li, Guobing
    Zhao, Huailong
    Hui, Hui
    [J]. ELECTRONICS LETTERS, 2018, 54 (14) : 905 - 906
  • [38] Deep Learning-Based Hybrid Beamforming Design for IRS-Aided MIMO Communication
    Ikeagu, Kenneth
    Khandaker, Muhammad R. A.
    Song, Chaoyun
    Ding, Yuan
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (02) : 461 - 465
  • [39] Deep learning-based DOA estimation for hybrid massive MIMO receive array with overlapped subarrays
    Li, Yifan
    Shi, Baihua
    Shu, Feng
    Song, Yaoliang
    Wang, Jiangzhou
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2023, 2023 (01)
  • [40] Deep learning-based DOA estimation for hybrid massive MIMO receive array with overlapped subarrays
    Yifan Li
    Baihua Shi
    Feng Shu
    Yaoliang Song
    Jiangzhou Wang
    [J]. EURASIP Journal on Advances in Signal Processing, 2023