Numerical and theoretical analysis of crushing strength of 3D re-entrant honeycomb

被引:26
|
作者
Qi, Chang [1 ,2 ]
Pei, Lian-Zheng [1 ]
Remennikov, Alex [3 ]
Yang, Shu [1 ,2 ]
Jiang, Feng [1 ]
机构
[1] Dalian Univ Technol, Sch Automot Engn, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Ningbo Inst, Ningbo 315016, Peoples R China
[3] Univ Wollongong, Ctr Infrastruct Protect & Min Safety, Wollongong, NSW 2522, Australia
关键词
Auxetic; 3D re-entrant honeycomb; Crushing strength; NPR; ANTI-TRICHIRAL HONEYCOMBS; AUXETIC HONEYCOMB; CELLULAR STRUCTURES; LARGE-DEFORMATION; BLAST RESPONSE; IMPACT; PANELS; RESISTANCE; BEHAVIOR; CORES;
D O I
10.1016/j.tws.2022.110140
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Auxetic structures with negative Poisson's ratio (NPR) have been widely studied because of their great potentials in energy absorption. In order to further understand the 3D auxetic structures, especially the 3D re-entrant honeycombs, the crushing response of metallic 3D re-entrant honeycomb (3D-RH) is theoretically studied in this paper. First, the finite element (FE) model of the 3D-RH was built and validated. The numerical simulation results show that the 3D-RH exhibits different deformation modes under low-and high-speed crushing. Secondly, a set of numerical simulations was used to determine the critical velocity that distinguishes the two deformation modes. Based on the predicted deformation profile, the crushing strength of 3D-RH under low-and high-speed crushing was derived in the form of theoretical equations. The relative errors between the theoretical and numerical results are less than 10%. Thirdly, the structural parameters were studied to reveal their effects on the crushing strength of 3D-RH. The results showed that the oblique wall length and cell wall thickness have significant effects on the crushing strength, while the cross length and cell wall width have little effect on the crushing strength. In addition, the re-entrant angle has no obvious effect on the low-speed crushing strength, but has a significant effect on the high-speed crushing strength. Finally, considering the rotational symmetry of the 3D-RH unit, the 3D-RH-nRP unit was found, which is a new type of 3D re-entrant unit with multiple re-entrant parts. The corresponding equations of crushing strength were derived. The FE results showed that the equations can well estimate the crushing strength of 3D-RH-nRP structures.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Non local analytical and numerical modelling of re-entrant auxetic honeycomb
    Bora, Kaustav Moni
    Varshney, Shailendra Kumar
    Kumar, Cheruvu Siva
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (02):
  • [22] Tensile and bending properties of flexible auxetic re-entrant honeycomb structures made by 3D printing
    Du Zhaoqun
    Xu Qiaoli
    Gu Longxin
    Zheng Dongming
    Wang Qicai
    INDUSTRIA TEXTILA, 2020, 71 (02): : 174 - 179
  • [23] Design Study for Multifunctional 3D Re-entrant Auxetics
    Bronder, Stefan
    Herter, Franziska
    Roehrig, Anabel
    Baehre, Dirk
    Jung, Anne
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (01)
  • [24] Microstructural effect of a novel re-entrant triangular honeycomb under dynamic crushing and different temperature
    Wang, Wei Min
    Hu, Jun
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [25] Bending performance of 3D re-entrant and hexagonal metamaterials
    Zhang, Xue Gang
    Jiang, Wei
    Zhang, Yi
    Han, Dong
    Luo, Chen
    Zhang, Xiang Yu
    Hao, Jian
    Xie, Yi Min
    Ren, Xin
    THIN-WALLED STRUCTURES, 2023, 188
  • [26] Impact Testing of 3D Re-Entrant Honeycomb Polyamide Structure Using Split Hopkinson Pressure Bar
    Chen, Jiangping
    Tao, Weijun
    Pang, Shumeng
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [27] VAM-based equivalent-homogenization model for 3D re-entrant auxetic honeycomb structures
    Rong, Liu
    Yifeng, Zhong
    Shiwen, Wang
    Evrard, Irakoze Alain
    Siqi, Miao
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 268
  • [28] Blast mitigation using polymeric 3D printed auxetic re-entrant honeycomb structures: A preliminary study
    Critchley, Richard
    Hazael, Rachael
    Bhatti, Kamran
    Wood, David
    Peare, Alan
    Johnson, Stephen
    Temple, Tracey
    INTERNATIONAL JOURNAL OF PROTECTIVE STRUCTURES, 2022, 13 (03) : 469 - 486
  • [29] Impact Response of Re-Entrant Hierarchical Honeycomb
    Lian, Jinming
    Wang, Zhenqing
    MATERIALS, 2023, 16 (22)
  • [30] A numerical study on energy absorption of re-entrant honeycomb structures with variable alignment
    Tatlier, Mehmet Seha
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2021, 26 (03) : 237 - 245