Certain Quantum Operator Related to Generalized Mittag-Leffler Function

被引:1
|
作者
Yassen, Mansour F. [1 ,2 ]
Attiya, Adel A. [3 ,4 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Aflaj, Dept Math, Al Aflaj 11912, Saudi Arabia
[2] Damietta Univ, Fac Sci, Dept Math, New Damietta 34517, Egypt
[3] Univ Hail, Coll Sci, Dept Math, Hail 81451, Saudi Arabia
[4] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
Mittag-Leffler function; quantum calculus; Jackson differential operator; q-differentiation; q-integration; subordination relation; differential subordination; Fekete-Szego function; operators in geometric function theory; CONIC DOMAINS; SUBCLASS;
D O I
10.3390/math11244963
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a novel class of analytic functions in the form h(z) = z(p) + Sigma(infinity)(k=p+1) a(k) z(k) in the unit disk. These functions establish a connection between the extendedMittag-Leffler function and the quantum operator presented in this paper, which is denoted by N-q,p(n) ((L), a, b) and is also an extension of the Raina function that combines with the Jackson derivative. Through the application of differential subordination methods, essential properties like bounds of coefficients and the Fekete-Szego problem for this class are derived. Additionally, some results of special cases to this study that were previously studied were also highlighted.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Dirichlet Averages of Generalized Mittag-Leffler Type Function
    Kumar, Dinesh
    Ram, Jeta
    Choi, Junesang
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [32] Integral Equations Involving Generalized Mittag-Leffler Function
    R. Desai
    I. A. Salehbhai
    A. K. Shukla
    [J]. Ukrainian Mathematical Journal, 2020, 72 : 712 - 721
  • [33] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    Bansal, M. K.
    Jolly, N.
    Jain, R.
    Kumar, Devendra
    [J]. JOURNAL OF ANALYSIS, 2019, 27 (03): : 727 - 740
  • [34] Fractional differential equations for the generalized Mittag-Leffler function
    Agarwal, Praveen
    Al-Mdallal, Qasem
    Cho, Yeol Je
    Jain, Shilpi
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [35] Integral transform with the extended generalized Mittag-Leffler function
    Kilbas, A.A.
    Koroleva, A.A.
    [J]. Mathematical Modelling and Analysis, 2006, 11 (02) : 173 - 186
  • [36] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    M. K. Bansal
    N. Jolly
    R. Jain
    Devendra Kumar
    [J]. The Journal of Analysis, 2019, 27 : 727 - 740
  • [37] A Generalized Mittag-Leffler Type Function with Four Parameters
    Garg, Mridula
    Sharma, Ajay
    Manohar, Pratibha
    [J]. THAI JOURNAL OF MATHEMATICS, 2016, 14 (03): : 637 - 649
  • [38] Fractional Differintegral Operators of The Generalized Mittag-Leffler Function
    Gupta, Anjali
    Parihar, C. L.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (01): : 137 - 144
  • [39] Turan type inequalities for generalized Mittag-Leffler function
    Dou, Xiang Kai
    Yin, Li
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [40] TURAN TYPE INEQUALITIES FOR GENERALIZED MITTAG-LEFFLER FUNCTION
    Yin, Li
    Huang, Li-Guo
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (03): : 667 - 672