Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9

被引:7
|
作者
Guo, Xiaochen [1 ]
Geng, Lishuang [1 ]
Jiang, Chaoqian [1 ]
Yao, Wang [1 ]
Jin, Junxue [1 ]
Liu, Zhonghua [1 ]
Mu, Yanshuang [1 ]
机构
[1] Northeast Agr Univ, Coll Life Sci, Key Lab Anim Cellular & Genet Engn Heilongjiang Pr, 600 Changjiang St, Harbin 150030, Peoples R China
关键词
Porcine; PFF cells; CRISPR; Cas9; gRNA-tRNA array; SCNT; PLURIPOTENT STEM-CELLS; GUIDE-RNA; GENERATION; EFFICIENCY; EMBRYOS; NUCLEASES;
D O I
10.1080/10495398.2023.2187402
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Multiplex gene modifications are highly required for various fields of porcine research. In many species, the CRISPR/Cas9 system has been widely applied for genomic editing and provides a potential tool for introducing multiplex genome mutations simultaneously. Here, we present a CRISPR-Cas9 gRNA-tRNA array (GTR-CRISPR) for multiplexed engineering of porcine fetal fibroblasts (PFFs). We successfully produced multiple sgRNAs using only one Pol III promoter by taking advantage of the endogenous tRNA processing mechanism in porcine cells. Using an all-in-one construct carrying GTR and Cas9, we disrupted the IGFBP3, MSTN, MC4R, and SOCS2 genes in multiple codon regions in one PFF cell simultaneously. This technique allows the simultaneous disruption of four genes with 5.5% efficiency. As a result, this approach may effectively target multiple genes at the same time, making it a powerful tool for establishing multiple genes mutant cells in pigs.
引用
收藏
页码:4703 / 4712
页数:10
相关论文
共 50 条
  • [41] Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts
    Campa, Carlo C.
    Weisbach, Niels R.
    Santinha, Antonio J.
    Incarnato, Danny
    Platt, Randall J.
    NATURE METHODS, 2019, 16 (09) : 887 - +
  • [42] CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum
    Pohl, C.
    Kiel, J. A. K. W.
    Driessen, A. J. M.
    Bovenberg, R. A. L.
    Nygard, Y.
    ACS SYNTHETIC BIOLOGY, 2016, 5 (07): : 754 - 764
  • [43] Visual screening of CRISPR/Cas9 editing efficiency based on micropattern arrays for editing porcine cells
    Peng, Wanliu
    Gao, Mengyu
    Zhu, Xinglong
    Liu, Xinmei
    Yang, Guang
    Li, Shun
    Liu, Yong
    Bai, Lang
    Yang, Jiayin
    Bao, Ji
    BIOTECHNOLOGY JOURNAL, 2024, 19 (04)
  • [44] Targeted genome engineering based on CRISPR/Cas9 system to enhance FVIII expression in vitro
    Zhao, Lidong
    Fang, Shuai
    Ma, Yanchun
    Ren, Juan
    Hao, Lixia
    Wang, Lei
    Yang, Jia
    Lu, Xiaomei
    Yang, Linhua
    Wang, Gang
    GENE, 2024, 896
  • [45] CRISPR/CAS9 MEDIATED GENOME ENGINEERING OF HUMAN MESENCHYMAL STEM CELLS
    van den Akker, G.
    van Beuningen, H.
    Davidson, E. Blaney
    van der Kraan, P.
    ANNALS OF THE RHEUMATIC DISEASES, 2016, 75 : A48 - A48
  • [46] Multiplex CRISPR/Cas9 Genome Engineering for Directing Myogenic Cellular Differentiation
    Kabadi, Ami M.
    Liu, Feimei
    Gersbach, Charles A.
    MOLECULAR THERAPY, 2015, 23 : S157 - S157
  • [47] Genome Engineering of Primary Human B Cells Using CRISPR/Cas9
    Laoharawee, Kanut
    Johnson, Matthew J.
    Lahr, Walker S.
    Peterson, Joseph J.
    Webber, Beau R.
    Moriarity, Branden S.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (165):
  • [48] Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives
    Mahfouz, Magdy M.
    Piatek, Agnieszka
    Stewart, Charles Neal, Jr.
    PLANT BIOTECHNOLOGY JOURNAL, 2014, 12 (08) : 1006 - 1014
  • [49] Wheat Genome Engineering via CRISPR/Cas9 to Generate Virus Resistance
    Navia-Urrutia, Monica
    Rupp, Jessica L.
    Fellers, John P.
    Trick, Harold N.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2019, 55 : S58 - S58
  • [50] CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications
    Cheng, Hao
    Zhang, Feng
    Ding, Yang
    PHARMACEUTICS, 2021, 13 (10)