Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9

被引:7
|
作者
Guo, Xiaochen [1 ]
Geng, Lishuang [1 ]
Jiang, Chaoqian [1 ]
Yao, Wang [1 ]
Jin, Junxue [1 ]
Liu, Zhonghua [1 ]
Mu, Yanshuang [1 ]
机构
[1] Northeast Agr Univ, Coll Life Sci, Key Lab Anim Cellular & Genet Engn Heilongjiang Pr, 600 Changjiang St, Harbin 150030, Peoples R China
关键词
Porcine; PFF cells; CRISPR; Cas9; gRNA-tRNA array; SCNT; PLURIPOTENT STEM-CELLS; GUIDE-RNA; GENERATION; EFFICIENCY; EMBRYOS; NUCLEASES;
D O I
10.1080/10495398.2023.2187402
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Multiplex gene modifications are highly required for various fields of porcine research. In many species, the CRISPR/Cas9 system has been widely applied for genomic editing and provides a potential tool for introducing multiplex genome mutations simultaneously. Here, we present a CRISPR-Cas9 gRNA-tRNA array (GTR-CRISPR) for multiplexed engineering of porcine fetal fibroblasts (PFFs). We successfully produced multiple sgRNAs using only one Pol III promoter by taking advantage of the endogenous tRNA processing mechanism in porcine cells. Using an all-in-one construct carrying GTR and Cas9, we disrupted the IGFBP3, MSTN, MC4R, and SOCS2 genes in multiple codon regions in one PFF cell simultaneously. This technique allows the simultaneous disruption of four genes with 5.5% efficiency. As a result, this approach may effectively target multiple genes at the same time, making it a powerful tool for establishing multiple genes mutant cells in pigs.
引用
收藏
页码:4703 / 4712
页数:10
相关论文
共 50 条
  • [31] A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation
    Lowder, Levi G.
    Zhang, Dengwei
    Baltes, Nicholas J.
    Paul, Joseph W., III
    Tang, Xu
    Zheng, Xuelian
    Voytas, Daniel F.
    Hsieh, Tzung-Fu
    Zhang, Yong
    Qi, Yiping
    PLANT PHYSIOLOGY, 2015, 169 (02) : 971 - +
  • [32] Cas9 expression in porcine fibroblasts facilitates in vitro genome editing
    Soellner, J. H.
    Sake, H. J.
    Frenzel, A.
    Lechler, R.
    Hermann, D.
    Fuchs, W.
    Petersen, B.
    REPRODUCTION IN DOMESTIC ANIMALS, 2021, 56 : 16 - 16
  • [33] CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery
    Luo, Ji
    TRENDS IN CANCER, 2016, 2 (06): : 313 - 324
  • [34] Multiplexed CRISPR/Cas9 quantifications based on bioinspired photonic barcodes
    Zhang, Dagan
    Cai, Lijun
    Wei, Xiaowei
    Wang, Yuetong
    Shang, Luoran
    Sun, Lingyun
    Zhao, Yuanjin
    NANO TODAY, 2021, 40
  • [35] CRISPR/CAS9 MEDIATED GENOME ENGINEERING OF HUMAN MESENCHYMAL STEM
    van den Akker, G.
    van Beuningen, H.
    Davidson, E. Blaney
    van der Kraan, P.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S231 - S231
  • [36] In-Yeast Engineering of a Bacterial Genome Using CRISPR/Cas9
    Tsarmpopoulos, Iason
    Gourgues, Geraldine
    Blanchard, Alain
    Vashee, Sanjay
    Jores, Joerg
    Lartigue, Carole
    Sirand-Pugnet, Pascal
    ACS SYNTHETIC BIOLOGY, 2016, 5 (01): : 104 - 109
  • [37] CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops
    Karkute, Suhas G.
    Singh, Achuit K.
    Gupta, Om P.
    Singh, Prabhakar M.
    Singh, Bijendra
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [38] Efficient Genome Engineering of Toxoplasma gondii Using CRISPR/Cas9
    Sidik, Saima M.
    Hackett, Caroline G.
    Tran, Fanny
    Westwood, Nicholas J.
    Lourido, Sebastian
    PLOS ONE, 2014, 9 (06):
  • [39] Genome editing in mucopolysaccharidosis type IVA fibroblasts using CRISPR/Cas9
    Suarez, Diego A.
    Almeciga, Carlos J.
    MOLECULAR GENETICS AND METABOLISM, 2022, 135 (02) : S117 - S117
  • [40] Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts
    Carlo C. Campa
    Niels R. Weisbach
    António J. Santinha
    Danny Incarnato
    Randall J. Platt
    Nature Methods, 2019, 16 : 887 - 893