Completeness, closedness and metric reflections of pseudometric spaces

被引:1
|
作者
Bilet, Viktoriia [1 ]
Dovgoshey, Oleksiy [1 ,2 ]
机构
[1] Inst Appl Math & Mech NASU, Dept Theory Funct, Dobrovolskogo Str 1, UA-84100 Slovyansk, Ukraine
[2] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Completeness; Pseudometric; Metric reflection of pseudometric; space; Equivalence relation; PRETANGENT SPACES; TANGENT SPACES;
D O I
10.1016/j.topol.2023.108440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that a metric space (X, d) is complete iff the set X is closed in every metric superspace of (X, d). For a given pseudometric space (Y, p), we describe the maximal class CEC(Y, p) of superspaces of (Y, p) such that (Y, p) is complete if and only if Y is closed in every (Z, Delta) is an element of CEC(Y, p). We also introduce the concept of pseudoisometric spaces and prove that spaces are pseudoisometric iff their metric reflections are isometric. The last result implies that a pseudometric space is complete if and only if this space is pseudoisometric to a complete pseudometric space. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Completeness of hyperspaces of compact subsets of quasi-metric spaces
    M. Ali-Akbari
    M. Pourmahdian
    Acta Mathematica Hungarica, 2010, 127 : 260 - 272
  • [42] Completeness in quasi-metric spaces and Ekeland Variational Principle
    Cobzas, S.
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (08) : 1073 - 1084
  • [43] LEFT K-COMPLETENESS IN QUASI-METRIC SPACES
    ROMAGUERA, S
    MATHEMATISCHE NACHRICHTEN, 1992, 157 : 15 - 23
  • [44] ON s-CLOSEDNESS AND S-CLOSEDNESS IN TOPOLOGICAL SPACES
    Duszynski, Zbigniew
    MATEMATICKI VESNIK, 2010, 62 (03): : 199 - 214
  • [45] Fuzzy φ-pseudometrics and Fuzzy φ-pseudometric Spaces
    Sostak, Alexander
    Bets, Raivis
    ADVANCES IN FUZZY LOGIC AND TECHNOLOGY 2017, VOL 3, 2018, 643 : 328 - 340
  • [46] On soft quasi-pseudometric spaces
    Sabao, Hope
    Otafudu, Olivier Olela
    APPLIED GENERAL TOPOLOGY, 2021, 22 (01): : 17 - 30
  • [47] A CLOSEDNESS THEOREM FOR NORMED SPACES
    Poppe, Harry
    DEMONSTRATIO MATHEMATICA, 2008, 41 (01) : 123 - 127
  • [48] ON THE KOBAYASHI PSEUDOMETRIC REDUCTION OF HOMOGENEOUS SPACES
    GILLIGAN, B
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1988, 31 (01): : 45 - 51
  • [49] Multivalued Caristi'S Type Mappings in Fuzzy Metric Spaces and a Characterization of Fuzzy Metric Completeness
    Abbas, Mujahid
    Ali, Basit
    Romaguera, Salvador
    FILOMAT, 2015, 29 (06) : 1217 - 1222
  • [50] A CHARACTERISATION OF COMPLETENESS OF b-FUZZY METRIC SPACES AND NONLINEAR CONTRACTIONS
    Randelovic, Branislav
    Cirovic, Natasa A.
    Jesic, Sinisa N.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2021, 15 (01) : 233 - 242