Completeness, closedness and metric reflections of pseudometric spaces

被引:1
|
作者
Bilet, Viktoriia [1 ]
Dovgoshey, Oleksiy [1 ,2 ]
机构
[1] Inst Appl Math & Mech NASU, Dept Theory Funct, Dobrovolskogo Str 1, UA-84100 Slovyansk, Ukraine
[2] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Completeness; Pseudometric; Metric reflection of pseudometric; space; Equivalence relation; PRETANGENT SPACES; TANGENT SPACES;
D O I
10.1016/j.topol.2023.108440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that a metric space (X, d) is complete iff the set X is closed in every metric superspace of (X, d). For a given pseudometric space (Y, p), we describe the maximal class CEC(Y, p) of superspaces of (Y, p) such that (Y, p) is complete if and only if Y is closed in every (Z, Delta) is an element of CEC(Y, p). We also introduce the concept of pseudoisometric spaces and prove that spaces are pseudoisometric iff their metric reflections are isometric. The last result implies that a pseudometric space is complete if and only if this space is pseudoisometric to a complete pseudometric space. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] On Completeness in Metric Spaces and Fixed Point Theorems
    Gregori, Valentin
    Minana, Juan-Jose
    Roig, Bernardino
    Sapena, Almanzor
    RESULTS IN MATHEMATICS, 2018, 73 (04)
  • [22] FIXED POINTS AND COMPLETENESS ON PARTIAL METRIC SPACES
    Paesano, Daniela
    Vetro, Pasquale
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 369 - 383
  • [23] On Completeness in Metric Spaces and Fixed Point Theorems
    Valentín Gregori
    Juan-José Miñana
    Bernardino Roig
    Almanzor Sapena
    Results in Mathematics, 2018, 73
  • [24] On the Upper Completeness of Quasi-metric Spaces
    Chen XiaoDan
    Chen ShaoBai
    2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 446 - 449
  • [25] Closedness, Separation and Connectedness in Pseudo-Quasi-Semi Metric Spaces
    Baran, Tesnim Meryem
    FILOMAT, 2020, 34 (14) : 4757 - 4766
  • [26] Completeness and compactness properties in metric spaces, topological groups and function spaces
    Dorantes-Aldama, Alejandro
    Shakhmatov, Dmitri
    TOPOLOGY AND ITS APPLICATIONS, 2017, 226 : 134 - 164
  • [27] On weak G-completeness for fuzzy metric spaces
    Adhya, Sugata
    Ray, A. Deb
    SOFT COMPUTING, 2022, 26 (05) : 2099 - 2105
  • [28] A Kirk Type Characterization of Completeness for Partial Metric Spaces
    Romaguera, Salvador
    FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [29] On Completeness and Fixed Point Theorems in Fuzzy Metric Spaces
    Gregori, Valentin
    Minana, Juan-Jose
    Roig, Bernardino
    Sapena, Almanzor
    MATHEMATICS, 2024, 12 (02)
  • [30] On weak G-completeness for fuzzy metric spaces
    Sugata Adhya
    A. Deb Ray
    Soft Computing, 2022, 26 : 2099 - 2105