Classes of Harmonic Functions Related to Mittag-Leffler Function

被引:2
|
作者
Al-Dohiman, Abeer A. [1 ]
Frasin, Basem Aref [2 ]
Tasar, Naci [3 ]
Sakar, Fethiye Muge [3 ]
机构
[1] Jouf Univ, Fac Sci, Dept Math, POB 2014, Sakaka, Saudi Arabia
[2] Al al Bayt Univ, Fac Sci, Dept Math, Mafraq 25113, Jordan
[3] Dicle Univ, Fac Econ & Adm Sci, Dept Management, TR-21280 Diyarbakir, Turkiye
关键词
harmonic; univalent functions; harmonic starlike; harmonic convex; Mittag-Leffler function; HYPERGEOMETRIC-FUNCTIONS; UNIVALENT-FUNCTIONS; STARLIKE; SUBCLASSES; CONNECTIONS; CONVEX;
D O I
10.3390/axioms12070714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to find new inclusion relations of the harmonic class HF((sic),?) with the subclasses S-HF*,K-HF and T-HF(N)(t) of harmonic functions by applying the convolution operator T(I) associated with the Mittag-Leffler function. Further for (sic) = 0, several special cases of the main results are also obtained.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION
    Arshad, Muhammad
    Choi, Junesang
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 549 - 560
  • [42] A monotonicity property of the Mittag-Leffler function
    Alzer, Horst
    Kwong, Man Kam
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 181 - 187
  • [43] ON ASYMPTOTICS OF DISCRETE MITTAG-LEFFLER FUNCTION
    Nechvatal, Ludek
    MATHEMATICA BOHEMICA, 2014, 139 (04): : 667 - 675
  • [44] Properties of the Mittag-Leffler Relaxation Function
    Mário N. Berberan-Santos
    Journal of Mathematical Chemistry, 2005, 38 : 629 - 635
  • [45] More on the Unified Mittag-Leffler Function
    Jung, Chahnyong
    Farid, Ghulam
    Yasmeen, Hafsa
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (03):
  • [46] Exponential asymptotics of the Mittag-Leffler function
    Paris, RB
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2028): : 3041 - 3052
  • [47] When is a Mittag-Leffler function a Nussbaum function?
    Li, Yan
    Chen, YangQuan
    AUTOMATICA, 2009, 45 (08) : 1957 - 1959
  • [48] PARTIAL SUMS OF MITTAG-LEFFLER FUNCTION
    Bansal, Deepak
    Orhan, Halit
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 423 - 431
  • [49] On the Numerical Computation of the Mittag-Leffler Function
    Ortigueira, Manuel D.
    Lopes, Antonio M.
    Machado, Jose Tenreiro
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (06) : 725 - 736
  • [50] Integral Representation of the Mittag-Leffler Function
    Saenko, V. V.
    RUSSIAN MATHEMATICS, 2022, 66 (04) : 43 - 58