Disproof of a conjecture on the minimum spectral radius and the domination number

被引:1
|
作者
Hu, Yarong [1 ,3 ]
Lou, Zhenzhen [2 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[3] Yuncheng Univ, Sch Math & Informat Technol, Yuncheng 044000, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius; Domination number; Minimizer graph; GRAPHS; TREES;
D O I
10.1016/j.laa.2023.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gn,& gamma; be the set of all connected graphs on n vertices with domination number & gamma;. A graph is called a minimizer graph if it attains the minimum spectral radius among Gn,& gamma;. Very recently, Liu, Li and Xie (2023) [17] proved that the minimizer graph over all graphs in Gn,& gamma; must be a tree. Moreover, they determined the minimizer graph among Gn,Ln21 for even n, and posed the conjecture on the minimizer graph among Gn,L n2 1 for odd n. In this paper, we disprove the conjecture and completely determine the unique minimizer graph among Gn,L n2 1 for odd n. & COPY; 2023 Published by Elsevier Inc.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [1] Disproof of a Conjecture on the Subdivision Domination Number of a Graph
    O. Favaron
    H. Karami
    S. M. Sheikholeslami
    Graphs and Combinatorics, 2008, 24 : 309 - 312
  • [2] Disproof of a conjecture on the subdivision domination number of a graph
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    GRAPHS AND COMBINATORICS, 2008, 24 (04) : 309 - 312
  • [3] The minimum spectral radius of graphs with a given domination number
    Liu, Chang
    Li, Jianping
    Xie, Zheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 673 : 233 - 258
  • [4] DISPROOF OF A CONJECTURE IN THE DOMINATION THEORY
    ZVEROVICH, IE
    ZVEROVICH, VE
    GRAPHS AND COMBINATORICS, 1994, 10 (04) : 389 - 396
  • [5] RADIUS, LEAF NUMBER, CONNECTED DOMINATION NUMBER AND MINIMUM DEGREE
    Mafuta, P.
    Mukwembi, S.
    Munyira, S.
    QUAESTIONES MATHEMATICAE, 2023, 46 (05) : 1009 - 1016
  • [6] On the spectral radius of graphs with a given domination number
    Stevanovic, Dragan
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 1854 - 1864
  • [7] The Spectral Radius and Domination Number of Uniform Hypergraphs
    Kang, Liying
    Zhang, Wei
    Shan, Erfang
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT II, 2017, 10628 : 306 - 316
  • [8] Radius, diameter, domination number, order and minimum degree
    Mafuta, P.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (05): : 1281 - 1291
  • [9] Disproof of a Conjecture of Erdos and Simonovits on the Turan Number of Graphs with Minimum Degree 3
    Janzer, Oliver
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (10) : 8478 - 8494
  • [10] The spectral radius and domination number in linear uniform hypergraphs
    Kang, Liying
    Zhang, Wei
    Shan, Erfang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 42 (03) : 581 - 592