Inferring Semi-Parametric Gaussian Process Model Parameters for Missing Geotechnical Data Prediction

被引:0
|
作者
Xie, Jiawei [1 ]
Huang, Jinsong [1 ]
Zhang, Yuting [1 ]
机构
[1] Univ Newcastle, Discipline Civil Surveying & Environm Engn, Callaghan, NSW, Australia
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data points in geotechnical site investigation data (i.e., CPT data) may be missing sometimes due to various reasons. This study proposed to use a semi-parametric Gaussian process regression (GPR) method for predicting missing data in geotechnical testing results. Semi-parametric GPR divides the spatial data into the trend function, spatial residual, and measurement errors. Compared with conventional GPR method, semi-parametric GPR enhances model interpretability and accuracy. However, this involves challenges in estimating the parameters in the model. Conventional GPR applications infer the model parameters based on maximum a posteriori (MAP) estimation. However, this method can only provide a point estimation of the model parameters. Point estimation may be trapped by a local optimum result. This study utilizes the Hamiltonian Monte Carlo (HMC) method to get the full posterior distribution of the model parameters. MAP and HMC methods are both applied to infer the model parameters based on a synthetic CPT data set. The performances of both methods are compared with the true model values. The results show that the model parameters estimated from the HMC are more reliable.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [1] Empirical likelihood in a semi-parametric model for missing response data
    Wang, LC
    Veraverbeke, N
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (04) : 625 - 639
  • [2] Semi-parametric optimization for missing data imputation
    Yongsong Qin
    Shichao Zhang
    Xiaofeng Zhu
    Jilian Zhang
    Chengqi Zhang
    [J]. Applied Intelligence, 2007, 27 : 79 - 88
  • [3] Semi-parametric optimization for missing data imputation
    Qin, Yongsong
    Zhang, Shichao
    Zhu, Xiaofeng
    Zhang, Jilian
    Zhang, Chengqi
    [J]. APPLIED INTELLIGENCE, 2007, 27 (01) : 79 - 88
  • [4] Semi-parametric Gaussian Process for Robot System Identification
    Wu, Tingfan
    Movellan, Javier
    [J]. 2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 725 - 731
  • [5] A Semi-parametric Model for Longitudinal Count Data
    Yin, Kang
    Jin, Tian
    [J]. ENERGY AND POWER TECHNOLOGY, PTS 1 AND 2, 2013, 805-806 : 1921 - +
  • [6] Modern variable selection for longitudinal semi-parametric models with missing data
    Kowalski, J.
    Hao, S.
    Chen, T.
    Liang, Y.
    Liu, J.
    Ge, L.
    Feng, C.
    Tu, X. M.
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (14) : 2548 - 2562
  • [7] Semi-parametric rank regression with missing responses
    Bindele, Huybrechts F.
    Abebe, Ash
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 : 117 - 132
  • [8] Gaussian semi-parametric estimation of fractional cointegration
    Velasco, C
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (03) : 345 - 378
  • [9] A semi-parametric model for censored and passively registered data
    Jonker, MA
    Van der Vaart, AW
    [J]. BERNOULLI, 2001, 7 (01) : 1 - 31
  • [10] ESTIMATED NON-PARAMETRIC AND SEMI-PARAMETRIC MODEL FOR LONGITUDINAL DATA
    AL-Adilee, Reem Tallal Kamil
    Aboudi, Emad Hazim
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 1963 - 1972