Inferring Semi-Parametric Gaussian Process Model Parameters for Missing Geotechnical Data Prediction

被引:0
|
作者
Xie, Jiawei [1 ]
Huang, Jinsong [1 ]
Zhang, Yuting [1 ]
机构
[1] Univ Newcastle, Discipline Civil Surveying & Environm Engn, Callaghan, NSW, Australia
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data points in geotechnical site investigation data (i.e., CPT data) may be missing sometimes due to various reasons. This study proposed to use a semi-parametric Gaussian process regression (GPR) method for predicting missing data in geotechnical testing results. Semi-parametric GPR divides the spatial data into the trend function, spatial residual, and measurement errors. Compared with conventional GPR method, semi-parametric GPR enhances model interpretability and accuracy. However, this involves challenges in estimating the parameters in the model. Conventional GPR applications infer the model parameters based on maximum a posteriori (MAP) estimation. However, this method can only provide a point estimation of the model parameters. Point estimation may be trapped by a local optimum result. This study utilizes the Hamiltonian Monte Carlo (HMC) method to get the full posterior distribution of the model parameters. MAP and HMC methods are both applied to infer the model parameters based on a synthetic CPT data set. The performances of both methods are compared with the true model values. The results show that the model parameters estimated from the HMC are more reliable.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [41] A semi-parametric method for transforming data to normality
    Koekemoer, Gerhard
    Swanepoel, Jan W. H.
    [J]. STATISTICS AND COMPUTING, 2008, 18 (03) : 241 - 257
  • [42] A Semi-Parametric Mode Regression with Censored Data
    S. Khardani
    [J]. Mathematical Methods of Statistics, 2019, 28 : 39 - 56
  • [43] A semi-parametric approach for imputing mixed data
    Helenowski, Irene B.
    Demirtas, Hakan
    [J]. STATISTICS AND ITS INTERFACE, 2013, 6 (03) : 399 - 412
  • [44] A Semi-Parametric Mode Regression with Censored Data
    Khardani, S.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2019, 28 (01) : 39 - 56
  • [45] Semi-parametric methods for longitudinal data analysis
    Altman, N
    [J]. AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 49 - 57
  • [46] A semi-parametric method for transforming data to normality
    Gerhard Koekemoer
    Jan W. H. Swanepoel
    [J]. Statistics and Computing, 2008, 18 : 241 - 257
  • [47] Explainable Hybrid Semi-parametric Model for Prediction of Power Generated by Wind Turbines
    Gijon, Alfonso
    Eiraudo, Simone
    Manjavacas, Antonio
    Bottaccioli, Lorenzo
    Lanzini, Andrea
    Molina-Solana, Miguel
    Gomez-Romero, Juan
    [J]. COMPUTATIONAL SCIENCE, ICCS 2024, PT V, 2024, 14836 : 299 - 306
  • [48] Grey forecasting model refining in deformation prediction based on semi-parametric regression
    Gao, Ning
    Cui, Ximin
    [J]. PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 : 2731 - 2735
  • [49] A semi-parametric method to test a regression model
    Harel, M
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 336 (07) : 601 - 604
  • [50] Bivariate Semi-Parametric Model: Bayesian Inference
    Debashis Samanta
    Debasis Kundu
    [J]. Methodology and Computing in Applied Probability, 2023, 25