Semi-parametric optimization for missing data imputation

被引:85
|
作者
Qin, Yongsong [1 ]
Zhang, Shichao [1 ]
Zhu, Xiaofeng [1 ]
Zhang, Jilian [1 ]
Zhang, Chengqi [1 ]
机构
[1] Beijing Univ, Sch Automat, Beijing, Peoples R China
基金
澳大利亚研究理事会;
关键词
missing data; missing data imputation; semi-parametric data;
D O I
10.1007/s10489-006-0032-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Missing data imputation is an important issue in machine learning and data mining. In this paper, we propose a new and efficient imputation method for a kind of missing data: semi-parametric data. Our imputation method aims at making an optimal evaluation about Root Mean Square Error (RMSE), distribution function and quantile after missing-data are imputed. We evaluate our approaches using both simulated data and real data experimentally, and demonstrate that our stochastic semi-parametric regression imputation is much better than existing deterministic semi-parametric regression imputation in efficiency and effectiveness.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 50 条
  • [1] Semi-parametric optimization for missing data imputation
    Yongsong Qin
    Shichao Zhang
    Xiaofeng Zhu
    Jilian Zhang
    Chengqi Zhang
    [J]. Applied Intelligence, 2007, 27 : 79 - 88
  • [2] Estimating Semi-Parametric Missing Values with Iterative Imputation
    Zhang, Shichao
    [J]. INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2010, 6 (03) : 1 - 10
  • [3] Empirical likelihood in a semi-parametric model for missing response data
    Wang, LC
    Veraverbeke, N
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (04) : 625 - 639
  • [4] Modern variable selection for longitudinal semi-parametric models with missing data
    Kowalski, J.
    Hao, S.
    Chen, T.
    Liang, Y.
    Liu, J.
    Ge, L.
    Feng, C.
    Tu, X. M.
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (14) : 2548 - 2562
  • [5] Semi-parametric rank regression with missing responses
    Bindele, Huybrechts F.
    Abebe, Ash
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 : 117 - 132
  • [6] ESTIMATION FOR NONIGNORABLE MISSING RESPONSE OR COVARIATE USING SEMI-PARAMETRIC QUANTILE REGRESSION IMPUTATION AND A PARAMETRIC RESPONSE PROBABILITY MODEL
    Berg, Emily
    Yu, Cindy
    [J]. STATISTICA SINICA, 2022, 32 (03) : 1611 - 1631
  • [7] Semi-parametric quantile regression for longitudinal analysis in the presence of missing at random data
    Goldwasser, MA
    Hughes, MD
    [J]. CONTROLLED CLINICAL TRIALS, 2003, 24 : 64S - 65S
  • [8] Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses
    Geraci, Marco
    Bottai, Matteo
    [J]. STATISTICAL MODELLING, 2006, 6 (04) : 321 - 336
  • [9] MISNN: Multiple Imputation via Semi-parametric Neural Networks
    Bu, Zhiqi
    Dai, Zongyu
    Zhang, Yiliang
    Long, Qi
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT I, 2023, 13935 : 430 - 442
  • [10] Inferring Semi-Parametric Gaussian Process Model Parameters for Missing Geotechnical Data Prediction
    Xie, Jiawei
    Huang, Jinsong
    Zhang, Yuting
    [J]. GEO-RISK 2023: INNOVATION IN DATA AND ANALYSIS METHODS, 2023, 345 : 113 - 122