Results on Katugampola Fractional Derivatives and Integrals

被引:0
|
作者
Jebril, Iqbal H. [1 ]
El-Khatib, Mohammed S. [2 ]
Abubaker, Ahmad A. [3 ]
Al-Shaikh, Suha B. [3 ]
Batiha, Iqbal M. [1 ,4 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, Amman 11733, Jordan
[2] Al Azhar Univ Gaza, Math Dept, Gaza, Palestine
[3] Arab Open Univ, Fac Comp Studies, Riyadh 11681, Saudi Arabia
[4] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman 346, U Arab Emirates
关键词
left Katugampola fractional derivatives; right Katugampola fractional derivatives; left Katugampola fractional integrals; right Katugampola fractional integrals;
D O I
10.28924/2291-8639-21-2023-113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order alpha is an element of (m - 1, m] and a (right) fractional derivative terminating at b, where m is an element of N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] EXISTENCE RESULTS FOR NONLINEAR KATUGAMPOLA FRACTIONAL DIFFERENTIAL EQUATIONS WITH AN INTEGRAL CONDITION
    Basti, B.
    Arioua, Y.
    Benhamidouche, N.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (02): : 243 - 260
  • [32] Existence and stability of Langevin equations with two Hilfer-Katugampola fractional derivatives
    Ibrahim, Rabha W.
    Harikrishnan, Sugumaran
    Kanagarajan, Kuppusamy
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (03): : 291 - 302
  • [33] New results using fractional integrals
    Dahmani, Zoubir
    Tabharit, Louiza
    Taf, Sabrina
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2010, 13 (06) : 601 - 606
  • [34] Hadamard functional fractional integrals and derivatives and fractional differential equations
    Balachandran, K.
    Matar, M.
    Annapoorani, N.
    Prabu, D.
    FILOMAT, 2024, 38 (03) : 779 - 792
  • [35] Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals
    Hu, Gou
    Lei, Hui
    Du, Tingsong
    AIMS MATHEMATICS, 2020, 5 (02): : 1425 - 1445
  • [36] Estimates of upper bound for differentiable mappings related to Katugampola fractional integrals and p-convex mappings
    Yu, Yuping
    Lei, Hui
    Hu, Gou
    Du, Tingsong
    AIMS MATHEMATICS, 2021, 6 (04): : 3525 - 3545
  • [37] Mellin transforms of generalized fractional integrals and derivatives
    Katugampola, Udita N.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 566 - 580
  • [38] Some Properties of Generalized Fractional Integrals and Derivatives
    Lupinska, Barbara
    Odzijewicz, Tatiana
    Schmeidel, Ewa
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [39] FRACTIONAL INTEGRALS AND DERIVATIVES IN q-CALCULUS
    Rajkovic, Predrag M.
    Marinkovic, Sladana D.
    Stankovic, Miomir S.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2007, 1 (01) : 311 - 323
  • [40] Fractional integrals and derivatives of H-function
    Kilbas, AA
    Saigo, M
    DOKLADY AKADEMII NAUK BELARUSI, 1997, 41 (04): : 34 - 39