Results on Katugampola Fractional Derivatives and Integrals

被引:0
|
作者
Jebril, Iqbal H. [1 ]
El-Khatib, Mohammed S. [2 ]
Abubaker, Ahmad A. [3 ]
Al-Shaikh, Suha B. [3 ]
Batiha, Iqbal M. [1 ,4 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, Amman 11733, Jordan
[2] Al Azhar Univ Gaza, Math Dept, Gaza, Palestine
[3] Arab Open Univ, Fac Comp Studies, Riyadh 11681, Saudi Arabia
[4] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman 346, U Arab Emirates
关键词
left Katugampola fractional derivatives; right Katugampola fractional derivatives; left Katugampola fractional integrals; right Katugampola fractional integrals;
D O I
10.28924/2291-8639-21-2023-113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order alpha is an element of (m - 1, m] and a (right) fractional derivative terminating at b, where m is an element of N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] SOME INEQUALITIES FOR FRACTIONAL INTEGRALS AND DERIVATIVES
    MARTINEZ, C
    SANZ, M
    MARTINEZ, MD
    DOKLADY AKADEMII NAUK SSSR, 1990, 315 (05): : 1049 - 1051
  • [22] Approximation of fractional integrals by means of derivatives
    Pooseh, Shakoor
    Almeida, Ricardo
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3090 - 3100
  • [23] Fractional Derivatives and Integrals: What Are They Needed For?
    Tarasov, Vasily E.
    Tarasova, Svetlana S.
    MATHEMATICS, 2020, 8 (02)
  • [24] General fractional integrals and derivatives and their applications
    Luchko, Yuri
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 455
  • [25] Fractional Integrals and Derivatives: Mapping Properties
    Rafeiro Humberto
    Stefan Samko
    Fractional Calculus and Applied Analysis, 2016, 19 : 580 - 607
  • [26] FRACTIONAL INTEGRALS AND DERIVATIVES: MAPPING PROPERTIES
    Rafeiro, Humberto
    Samko, Stefan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (03) : 580 - 607
  • [27] IMPROVED HERMITE HADAMARD TYPE INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Sanli, Zeynep
    Koroglu, Tuncay
    Kunt, Mehmet
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 1556 - 1575
  • [28] SIMPSON'S TYPE INEQUALITIES VIA THE KATUGAMPOLA FRACTIONAL INTEGRALS FOR s-CONVEX FUNCTIONS
    Kermausuor, Seth
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 709 - 720
  • [29] IMPROVED HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Sanli, Zeynep
    Kunt, Mehmet
    Koroglu, Tuncay
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (02): : 461 - 474
  • [30] HERMITE-HADAMARD TYPE INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Mumcu, Ilker
    Set, Erhan
    Akdemir, Ahmet Ocak
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) : 409 - 424