Results on Katugampola Fractional Derivatives and Integrals

被引:0
|
作者
Jebril, Iqbal H. [1 ]
El-Khatib, Mohammed S. [2 ]
Abubaker, Ahmad A. [3 ]
Al-Shaikh, Suha B. [3 ]
Batiha, Iqbal M. [1 ,4 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, Amman 11733, Jordan
[2] Al Azhar Univ Gaza, Math Dept, Gaza, Palestine
[3] Arab Open Univ, Fac Comp Studies, Riyadh 11681, Saudi Arabia
[4] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman 346, U Arab Emirates
关键词
left Katugampola fractional derivatives; right Katugampola fractional derivatives; left Katugampola fractional integrals; right Katugampola fractional integrals;
D O I
10.28924/2291-8639-21-2023-113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order alpha is an element of (m - 1, m] and a (right) fractional derivative terminating at b, where m is an element of N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hilfer–Katugampola fractional derivatives
    D. S. Oliveira
    E. Capelas de Oliveira
    Computational and Applied Mathematics, 2018, 37 : 3672 - 3690
  • [2] Ostrowski type inequalities via the Katugampola fractional integrals
    Gurbuz, Mustafa
    Tasdan, Yakup
    Set, Erhan
    AIMS MATHEMATICS, 2020, 5 (01): : 42 - 53
  • [3] Hilfer-Katugampola fractional derivatives
    Oliveira, D. S.
    Capelas de Oliveira, E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3672 - 3690
  • [4] New Integral Inequalities via the Katugampola Fractional Integrals for Functions Whose Second Derivatives Are Strongly η-Convex
    Kermausuor, Seth
    Nwaeze, Eze R.
    Tameru, Ana M.
    MATHEMATICS, 2019, 7 (02)
  • [5] Extension of Milne-type inequalities to Katugampola fractional integrals
    Lakhdari, Abdelghani
    Budak, Huseyin
    Awan, Muhammad Uzair
    Meftah, Badreddine
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [6] HERMITE-HADAMARD TYPE INEQUALITIES FOR KATUGAMPOLA FRACTIONAL INTEGRALS
    Wang, Shu-Hong
    Hai, Xu-Ran
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 1650 - 1667
  • [7] Ostrowski-type fractional integral inequalities for mappings whose derivatives are h-convex via Katugampola fractional integrals
    Farid, Ghulam
    Katugampola, Udita N.
    Usman, Muhammad
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (04): : 465 - 474
  • [8] ON HERMITE-HADAMARD TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Yaldiz, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 773 - 785
  • [9] On Katugampola fractional order derivatives and Darboux problem for differential equations
    Boucenna, Djalal
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (01): : 125 - 136
  • [10] Study of Results of Katugampola Fractional Derivative and Chebyshev Inequailities
    Nazeer N.
    Asjad M.I.
    Azam M.K.
    Akgül A.
    International Journal of Applied and Computational Mathematics, 2022, 8 (5)