Sandwich-type results regarding Riemann-Liouville fractional integral of q-hypergeometric function

被引:12
|
作者
Lupas, Alina Alb [1 ]
Oros, Georgia Irina [1 ]
机构
[1] Univ Oradea, Dept Math & Comp Sci, 1 Univ St, Oradea 410087, Romania
关键词
fractional integral of q-hypergeometric function; differential subordination; differential superordination; best dominant; best subordinant; ANALYTIC-FUNCTIONS;
D O I
10.1515/dema-2022-0186
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The study presented in this article involves q-calculus connected to fractional calculus applied in the univalent functions theory. Riemann-Liouville fractional integral of q-hypergeometric function is defined here, and investigations are conducted using the theories of differential subordination and superordination. Theorems and corollaries containing new subordination and superordination results are proved for which best dominants and best subordinants are given, respectively. As an application of the results obtained by the means of the two theories, the statement of a sandwich-type theorem concludes the study.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator
    Persson, Lars-Erik
    Shaimardan, Serikbol
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [22] Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator
    Lars-Erik Persson
    Serikbol Shaimardan
    Journal of Inequalities and Applications, 2015
  • [23] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [24] (k, s)-Riemann-Liouville fractional integral and applications
    Sarikaya, Mehmet Zeki
    Dahmani, Zoubir
    Kiris, Mehmet Eyup
    Ahmad, Farooq
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 77 - 89
  • [25] INEQUALITIES GENERATED WITH RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR
    Gurbuz, M.
    Ozturk, O.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 91 - 100
  • [26] A NOTE ON FRACTAL DIMENSION OF RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL
    Chandra, Subhash
    Abbas, Syed
    Liang, Yongshun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [27] APPROXIMATION PROPERTIES OF THE FRACTIONAL q-INTEGRAL OF RIEMANN-LIOUVILLE INTEGRAL TYPE SZASZ-MIRAKYAN-KANTOROVICH OPERATORS
    Kara, Mustafa
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (04): : 1136 - 1168
  • [28] Riemann-Liouville Fractional Integral Type Deep Neural Network Kantorovich Operators
    Baxhaku, Behar
    Agrawal, Purshottam Narain
    Bajpeyi, Shivam
    IRANIAN JOURNAL OF SCIENCE, 2024,
  • [29] NEW CHEBYSHEV-TYPE INEQUALITIES FOR THE GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL WITH RESPECT TO AN INCREASING FUNCTION
    Varosanec, Sanja
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1351 - 1361
  • [30] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134