Operational prediction of solar flares using a transformer-based framework

被引:5
|
作者
Abduallah, Yasser [1 ,2 ]
Wang, Jason T. L. [1 ,2 ]
Wang, Haimin [1 ,3 ,4 ]
Xu, Yan [1 ,3 ,4 ]
机构
[1] New Jersey Inst Technol, Inst Space Weather Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA
[4] New Jersey Inst Technol, Big Bear Solar Observ, 40386 North Shore Lane, Big Bear City, CA 92314 USA
关键词
D O I
10.1038/s41598-023-40884-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar flares are explosions on the Sun. They happen when energy stored in magnetic fields around solar active regions (ARs) is suddenly released. Solar flares and accompanied coronal mass ejections are sources of space weather, which negatively affects a variety of technologies at or near Earth, ranging from blocking high-frequency radio waves used for radio communication to degrading power grid operations. Monitoring and providing early and accurate prediction of solar flares is therefore crucial for preparedness and disaster risk management. In this article, we present a transformer based framework, named SolarFlareNet, for predicting whether an AR would produce a ?-class flare within the next 24 to 72 h. We consider three ? classes, namely the =M5.0 class, the =M class and the =C class, and build three transformers separately, each corresponding to a ? class. Each transformer is used to make predictions of its corresponding ?-class flares. The crux of our approach is to model data samples in an AR as time series and to use transformers to capture the temporal dynamics of the data samples. Each data sample consists of magnetic parameters taken from Space-weather HMI Active Region Patches (SHARP) and related data products. We survey flare events that occurred from May 2010 to December 2022 using the Geostationary Operational Environmental Satellite X-ray flare catalogs provided by the National Centers for Environmental Information (NCEI), and build a database of flares with identified ARs in the NCEI flare catalogs. This flare database is used to construct labels of the data samples suitable for machine learning. We further extend the deterministic approach to a calibration-based probabilistic forecasting method. The SolarFlareNet system is fully operational and is capable of making near real-time predictions of solar flares on the Web.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Transformer-based Architecture for Empathy Prediction and Emotion Classification
    Vasava, Himil
    Uikey, Pramegh
    Wasnik, Gaurav
    Sharma, Raksha
    PROCEEDINGS OF THE 12TH WORKSHOP ON COMPUTATIONAL APPROACHES TO SUBJECTIVITY, SENTIMENT & SOCIAL MEDIA ANALYSIS, 2022, : 261 - 264
  • [42] Deep Transformer-Based Asset Price and Direction Prediction
    Gezici, Abdul Haluk Batur
    Sefer, Emre
    IEEE ACCESS, 2024, 12 : 24164 - 24178
  • [43] HTTNet: hybrid transformer-based approaches for trajectory prediction
    Ge, Xianlei
    Shen, Xiaobo
    Zhou, Xuanxin
    Li, Xiaoyan
    Bulletin of the Polish Academy of Sciences: Technical Sciences, 2024, 72 (05)
  • [44] Transformer-based power system energy prediction model
    Rao, Zhuyi
    Zhang, Yunxiang
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 913 - 917
  • [45] A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting
    Liu, Jingxuan
    Zang, Haixiang
    Cheng, Lilin
    Ding, Tao
    Wei, Zhinong
    Sun, Guoqiang
    APPLIED ENERGY, 2023, 342
  • [46] Transformer-based Automatic Music Mood Classification Using Multi-modal Framework
    Kumar, Sujeesha Ajithakumari Suresh
    Rajan, Rajeev
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2023, 23 (01): : 18 - 34
  • [47] Enhancing Robustness of Speech Watermarking Using a Transformer-Based Framework Exploiting Acoustic Features
    Tong, Chuxuan
    Natgunanathan, Iynkaran
    Xiang, Yong
    Li, Jianhua
    Zong, Tianrui
    Zheng, Xi
    Gao, Longxiang
    IEEE/ACM Transactions on Audio Speech and Language Processing, 2024, 32 : 4822 - 4837
  • [48] A Transformer-based Framework for Multivariate Time Series Representation Learning
    Zerveas, George
    Jayaraman, Srideepika
    Patel, Dhaval
    Bhamidipaty, Anuradha
    Eickhoff, Carsten
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2114 - 2124
  • [49] A transformer-based deep learning framework to predict employee attrition
    Li, Wenhui
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [50] Transformer-based contrastive learning framework for image anomaly detection
    Fan, Wentao
    Shangguan, Weimin
    Chen, Yewang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3413 - 3426