Operational prediction of solar flares using a transformer-based framework

被引:5
|
作者
Abduallah, Yasser [1 ,2 ]
Wang, Jason T. L. [1 ,2 ]
Wang, Haimin [1 ,3 ,4 ]
Xu, Yan [1 ,3 ,4 ]
机构
[1] New Jersey Inst Technol, Inst Space Weather Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA
[4] New Jersey Inst Technol, Big Bear Solar Observ, 40386 North Shore Lane, Big Bear City, CA 92314 USA
关键词
D O I
10.1038/s41598-023-40884-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar flares are explosions on the Sun. They happen when energy stored in magnetic fields around solar active regions (ARs) is suddenly released. Solar flares and accompanied coronal mass ejections are sources of space weather, which negatively affects a variety of technologies at or near Earth, ranging from blocking high-frequency radio waves used for radio communication to degrading power grid operations. Monitoring and providing early and accurate prediction of solar flares is therefore crucial for preparedness and disaster risk management. In this article, we present a transformer based framework, named SolarFlareNet, for predicting whether an AR would produce a ?-class flare within the next 24 to 72 h. We consider three ? classes, namely the =M5.0 class, the =M class and the =C class, and build three transformers separately, each corresponding to a ? class. Each transformer is used to make predictions of its corresponding ?-class flares. The crux of our approach is to model data samples in an AR as time series and to use transformers to capture the temporal dynamics of the data samples. Each data sample consists of magnetic parameters taken from Space-weather HMI Active Region Patches (SHARP) and related data products. We survey flare events that occurred from May 2010 to December 2022 using the Geostationary Operational Environmental Satellite X-ray flare catalogs provided by the National Centers for Environmental Information (NCEI), and build a database of flares with identified ARs in the NCEI flare catalogs. This flare database is used to construct labels of the data samples suitable for machine learning. We further extend the deterministic approach to a calibration-based probabilistic forecasting method. The SolarFlareNet system is fully operational and is capable of making near real-time predictions of solar flares on the Web.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A Novel Hybrid Transformer-Based Framework for Solar Irradiance Forecasting Under Incomplete Data Scenarios
    Zhang, Hanjin
    Li, Bin
    Su, Shun-Feng
    Yang, Wankou
    Xie, Liping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (06) : 8605 - 8615
  • [32] Transformer and Graph Transformer-Based Prediction of Drug-Target Interactions
    Qian, Meiling
    Lu, Weizhong
    Zhang, Yu
    Liu, Junkai
    Wu, Hongjie
    Lu, Yaoyao
    Li, Haiou
    Fu, Qiming
    Shen, Jiyun
    Xiao, Yongbiao
    CURRENT BIOINFORMATICS, 2024, 19 (05) : 470 - 481
  • [33] A Transformer-Based Framework for Payload Malware Detection and Classification
    Stein, Kyle
    Mahyari, Arash
    Francia, Guillermo, III
    El-Sheikh, Eman
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0105 - 0111
  • [34] Enhancing tourism demand forecasting with a transformer-based framework
    Li, Xin
    Xu, Yechi
    Law, Rob
    Wang, Shouyang
    ANNALS OF TOURISM RESEARCH, 2024, 107
  • [35] A Transformer-Based Framework for Biomedical Information Retrieval Systems
    Hall, Karl
    Jayne, Chrisina
    Chang, Victor
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI, 2023, 14259 : 317 - 331
  • [36] Lung Cancer Prediction Using Electronic Claims Records: A Transformer-Based Approach
    Chen, Huan-Yu
    Wang, Hui-Min
    Lin, Ching-Heng
    Yang, Rob
    Lee, Chi-Chun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (12) : 6062 - 6073
  • [37] TBMF Framework: A Transformer-Based Multilevel Filtering Framework for PD Detection
    Xu, Ning
    Wang, Wensong
    Fulnecek, Jan
    Kabot, Ondrej
    Misak, Stanislav
    Wang, Lipo
    Zheng, Yuanjin
    Gooi, Hoay Beng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (04) : 4098 - 4107
  • [38] Rethinking Transformer-based Set Prediction for Object Detection
    Sun, Zhiqing
    Cao, Shengcao
    Yang, Yiming
    Kitani, Kris
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3591 - 3600
  • [39] TransCFD: A transformer-based decoder for flow field prediction
    Jiang, Jundou
    Li, Guanxiong
    Jiang, Yi
    Zhang, Laiping
    Deng, Xiaogang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [40] Transformer-based attention network for stock movement prediction
    Zhang, Qiuyue
    Qin, Chao
    Zhang, Yunfeng
    Bao, Fangxun
    Zhang, Caiming
    Liu, Peide
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 202