Global solutions to the rotating Navier-Stokes equations with large data in the critical Fourier-Besov spaces

被引:0
|
作者
Fujii, Mikihiro [1 ,2 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka, Japan
[2] Kyushu Univ, Grad Sch Math, Fukuoka 8190395, Japan
基金
日本学术振兴会;
关键词
Fourier-Besov spaces; global solutions; large data; the rotating Navier-Stokes equations; WELL-POSEDNESS; CORIOLIS-FORCE; ILL-POSEDNESS; EULER EQUATIONS; 3D EULER; REGULARITY; INTEGRABILITY;
D O I
10.1002/mana.202300226
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the initial value problem for the 3D incompressible Navier-Stokes equations with the Coriolis force. The aim of this paper is to prove the existence of a unique global solution with arbitrarily large initial data in the scaling critical Fourier-Besov spaces <((B) over dot)over cap>(3/p-1)(p,sigma) (R-3)(3) (2 <= p < 4, 1 <= sigma < infinity), provided that the size of the Coriolis parameter is sufficiently large. Moreover, if the initial data additionally belong to the scaling sub-critical spaces, we obtain an explicit relationship between the initial data and the Coriolis force, which ensures the existence of a unique global solution.
引用
收藏
页码:1678 / 1693
页数:16
相关论文
共 50 条
  • [31] Global solutions of Navier-Stokes equations for large initial data belonging to spaces with dominating mixed smoothness
    Triebel, Hans
    JOURNAL OF COMPLEXITY, 2015, 31 (02) : 147 - 161
  • [32] A class of solutions of the Navier-Stokes equations with large data
    Kukavica, Igor
    Rusin, Walter
    Ziane, Mohammed
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) : 1492 - 1514
  • [33] Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces
    Cannone, Marco
    Wu, Gang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (09) : 3754 - 3760
  • [34] SOLUTIONS OF THE NAVIER-STOKES EQUATIONS FOR LARGE OSCILLATORY DATA
    Kukavica, Igor
    Rusin, Walter
    Ziane, Mohammed
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2013, 18 (5-6) : 549 - 586
  • [35] Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data
    Chen, GQ
    Hoff, D
    Trivisa, K
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (11-12) : 2233 - 2257
  • [36] Besov spaces and Navier-Stokes equations on R3
    Furioli, G
    Lemarié-Rieusset, PG
    Zahrouni, E
    Zhioua, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (05): : 339 - 342
  • [37] A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces
    Zhang, Shunhang
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) : 1531 - 1561
  • [38] Well-Posedness of Mild Solutions for the Fractional Navier-Stokes Equations in Besov Spaces
    Xi, Xuan-Xuan
    Zhou, Yong
    Hou, Mimi
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [39] Bilinear estimates and uniqueness for Navier-Stokes equations in critical Besov-type spaces
    Ferreira, Lucas C. F.
    Perez-Lopez, Jhean E.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (01) : 379 - 400
  • [40] Sums of large global solutions to the incompressible Navier-Stokes equations
    Chemin, Jean-Yves
    Gallagher, Isabelle
    Zhang, Ping
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 681 : 65 - 82