Global solutions to the rotating Navier-Stokes equations with large data in the critical Fourier-Besov spaces

被引:0
|
作者
Fujii, Mikihiro [1 ,2 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka, Japan
[2] Kyushu Univ, Grad Sch Math, Fukuoka 8190395, Japan
基金
日本学术振兴会;
关键词
Fourier-Besov spaces; global solutions; large data; the rotating Navier-Stokes equations; WELL-POSEDNESS; CORIOLIS-FORCE; ILL-POSEDNESS; EULER EQUATIONS; 3D EULER; REGULARITY; INTEGRABILITY;
D O I
10.1002/mana.202300226
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the initial value problem for the 3D incompressible Navier-Stokes equations with the Coriolis force. The aim of this paper is to prove the existence of a unique global solution with arbitrarily large initial data in the scaling critical Fourier-Besov spaces <((B) over dot)over cap>(3/p-1)(p,sigma) (R-3)(3) (2 <= p < 4, 1 <= sigma < infinity), provided that the size of the Coriolis parameter is sufficiently large. Moreover, if the initial data additionally belong to the scaling sub-critical spaces, we obtain an explicit relationship between the initial data and the Coriolis force, which ensures the existence of a unique global solution.
引用
收藏
页码:1678 / 1693
页数:16
相关论文
共 50 条