The polynomial robust knapsack problem

被引:6
|
作者
Baldo, Alessandro [1 ]
Boffa, Matteo [2 ]
Cascioli, Lorenzo [1 ]
Fadda, Edoardo [1 ,3 ]
Lanza, Chiara [1 ]
Ravera, Arianna [1 ]
机构
[1] ISIRES, Turin, Italy
[2] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
[3] Politecn Torino, Dept Math Sci Giuseppe Luigi Lagrange, Turin, Italy
关键词
Heuristics; Robust knapsack problem; Genetic algorithm; Machine learning; EXACT ALGORITHMS; OPTIMIZATION; MAX;
D O I
10.1016/j.ejor.2022.06.029
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper introduces a new optimization problem, namely the Polynomial Robust Knapsack Problem. It generalises the Robust Knapsack formulation to encompass possible relations between subsets of items having every possible cardinality. This allows to better describe the utility function for the decision maker, at the price of increasing the complexity of the problem. Thus, in order to solve realistic instances in a reasonable amount of time, two heuristics are proposed. The first one applies machine learning tech-niques in order to quickly select the majority of the items, while the second makes use of genetic algo-rithms to solve the problem. A set of simulation examples is finally presented to show the effectiveness of the proposed approaches.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:1424 / 1434
页数:11
相关论文
共 50 条
  • [1] ON THE ROBUST KNAPSACK PROBLEM
    Monaci, Michele
    Pferschy, Ulrich
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 1956 - 1982
  • [2] The lexicographic α-robust knapsack problem
    Kalai, Rim
    Vanderpooten, Daniel
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2011, 18 (01) : 103 - 113
  • [3] The robust knapsack problem with queries
    Goerigk, Marc
    Gupta, Manoj
    Ide, Jonas
    Schoebel, Anita
    Sen, Sandeep
    COMPUTERS & OPERATIONS RESEARCH, 2015, 55 : 12 - 22
  • [4] Quasi-polynomial algorithm for the knapsack problem
    Brimkov, Valentin E.
    Yugoslav Journal of Operations Research, 1994, 4 (02) : 149 - 157
  • [5] A polynomial algorithm for a continuous bilevel knapsack problem
    Carvalho, Margarida
    Lodi, Andrea
    Marcotte, Patrice
    OPERATIONS RESEARCH LETTERS, 2018, 46 (02) : 185 - 188
  • [6] Exact solution of the robust knapsack problem
    Monaci, Michele
    Pferschy, Ulrich
    Serafini, Paolo
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (11) : 2625 - 2631
  • [7] DISTRIBUTIONALLY ROBUST STOCHASTIC KNAPSACK PROBLEM
    Cheng, Jianqiang
    Delage, Erick
    Lisser, Abdel
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) : 1485 - 1506
  • [8] A polynomial time approximation scheme for the multiple knapsack problem
    Chekuri, C
    Khanna, S
    SIAM JOURNAL ON COMPUTING, 2006, 35 (03) : 713 - 728
  • [9] A strongly polynomial FPTAS for the symmetric quadratic knapsack problem
    Xu, Zhou
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 218 (02) : 377 - 381
  • [10] Formulations and algorithms for the recoverable -robust knapsack problem
    Buesing, Christina
    Goderbauer, Sebastian
    Koster, Arie M. C. A.
    Kutschka, Manuel
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2019, 7 (01) : 15 - 45