Quasi-polynomial algorithm for the knapsack problem

被引:0
|
作者
Brimkov, Valentin E. [1 ]
机构
[1] Bulgarian Acad of Sciences, Sofia, Bulgaria
关键词
Computational complexity - Mathematical models - Mathematical programming - Optimization - Polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
The main result of the paper is a quasi-polynomial algorithm for generating the extremal points (vertices) of the Knapsack Polytope. The complexity of this algorithm (for fixed dimension) is better than the complexity of all the known quasi-polynomial algorithms for this problem. The idea is similar to this one used by Haies and Larman [2]. Our improvement is based on obtaining of new upper bounds for the number of the vertices of the Knapsack Polytope. The algorithm can be applied directly to solve the Knapsack Problem with arbitrary convex objective function.
引用
收藏
页码:149 / 157
相关论文
共 50 条
  • [1] A QUASI-POLYNOMIAL APPROXIMATION FOR THE RESTRICTED ASSIGNMENT PROBLEM
    Jansen, Klaus
    Rohwedder, Lars
    SIAM JOURNAL ON COMPUTING, 2020, 49 (06) : 1083 - 1108
  • [2] A Quasi-Polynomial Approximation for the Restricted Assignment Problem
    Jansen, Klaus
    Rohwedder, Lars
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2017, 2017, 10328 : 305 - 316
  • [3] Quasi-polynomial tractability
    Gnewuch, Michael
    Wozniakowski, Henryk
    JOURNAL OF COMPLEXITY, 2011, 27 (3-4) : 312 - 330
  • [4] ON QUASI-POLYNOMIAL ALGEBRAS
    ASANUMA, T
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 26 (02) : 115 - 139
  • [5] An algorithm for determining a class of invariants in quasi-polynomial systems
    Pongracz, Barna
    Szederkenyi, Gabor
    Hangos, Katalin M.
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (03) : 204 - 211
  • [6] An efficient implementation of a quasi-polynomial algorithm for generating hypergraph transversals
    Boros, E
    Elbassioni, K
    Gurvich, V
    Khachiyan, L
    ALGORITHMS - ESA 2003, PROCEEDINGS, 2003, 2832 : 556 - 567
  • [7] Necessary conditions for the existence of quasi-polynomial invariants: the quasi-polynomial and Lotka-Volterra systems
    Figueiredo, A
    Rocha, TM
    Brenig, L
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 262 (1-2) : 158 - 180
  • [8] A polynomial algorithm for a continuous bilevel knapsack problem
    Carvalho, Margarida
    Lodi, Andrea
    Marcotte, Patrice
    OPERATIONS RESEARCH LETTERS, 2018, 46 (02) : 185 - 188
  • [9] A QUASI-POLYNOMIAL ALGORITHM FOR WELL-SPACED HYPERBOLIC TSP
    Kisfaludi-Bak, Sandor
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2021, 12 (02) : 25 - 54
  • [10] Composition of quasi-polynomial maps
    Niboucha, Razika
    Salinier, Alain
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2017, 29 (02): : 569 - 601