The polynomial robust knapsack problem

被引:6
|
作者
Baldo, Alessandro [1 ]
Boffa, Matteo [2 ]
Cascioli, Lorenzo [1 ]
Fadda, Edoardo [1 ,3 ]
Lanza, Chiara [1 ]
Ravera, Arianna [1 ]
机构
[1] ISIRES, Turin, Italy
[2] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
[3] Politecn Torino, Dept Math Sci Giuseppe Luigi Lagrange, Turin, Italy
关键词
Heuristics; Robust knapsack problem; Genetic algorithm; Machine learning; EXACT ALGORITHMS; OPTIMIZATION; MAX;
D O I
10.1016/j.ejor.2022.06.029
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper introduces a new optimization problem, namely the Polynomial Robust Knapsack Problem. It generalises the Robust Knapsack formulation to encompass possible relations between subsets of items having every possible cardinality. This allows to better describe the utility function for the decision maker, at the price of increasing the complexity of the problem. Thus, in order to solve realistic instances in a reasonable amount of time, two heuristics are proposed. The first one applies machine learning tech-niques in order to quickly select the majority of the items, while the second makes use of genetic algo-rithms to solve the problem. A set of simulation examples is finally presented to show the effectiveness of the proposed approaches.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:1424 / 1434
页数:11
相关论文
共 50 条
  • [31] Fast Polynomial Time Approximate Solution for 0-1 Knapsack Problem
    Wang, Zhengyuan
    Zhang, Hui
    Li, Yali
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [32] A POLYNOMIAL LINEAR SEARCH ALGORITHM FOR THE N-DIMENSIONAL KNAPSACK-PROBLEM
    HEIDE, FMAD
    JOURNAL OF THE ACM, 1984, 31 (03) : 668 - 676
  • [33] A POLYNOMIAL-TIME ALGORITHM FOR A LARGE SUBCLASS OF THE INTEGER KNAPSACK-PROBLEM
    MILANOV, PB
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1984, 37 (03): : 309 - 312
  • [34] A Polynomial Solution to an H∞ Robust Stabilization Problem
    Liang, Yu
    Qiu, Li
    ASCC: 2009 7TH ASIAN CONTROL CONFERENCE, VOLS 1-3, 2009, : 642 - 647
  • [35] Robust optimization approach for a chance-constrained binary knapsack problem
    Jinil Han
    Kyungsik Lee
    Chungmok Lee
    Ki-Seok Choi
    Sungsoo Park
    Mathematical Programming, 2016, 157 : 277 - 296
  • [36] Robust optimization approach for a chance-constrained binary knapsack problem
    Han, Jinil
    Lee, Kyungsik
    Lee, Chungmok
    Choi, Ki-Seok
    Park, Sungsoo
    MATHEMATICAL PROGRAMMING, 2016, 157 (01) : 277 - 296
  • [37] On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem
    Britta Schulze
    Michael Stiglmayr
    Luís Paquete
    Carlos M. Fonseca
    David Willems
    Stefan Ruzika
    Mathematical Methods of Operations Research, 2020, 92 : 107 - 132
  • [38] Solving the 0-1 Knapsack Problem with Polynomial-Time Quantum Algorithm
    Liu, Hongying
    Nie, Shuzhi
    COMMUNICATIONS AND INFORMATION PROCESSING, PT 2, 2012, 289 : 377 - +
  • [39] A Fully Polynomial Approximation Scheme for a Knapsack Problem with a Minimum Filling Constraint (Extended Abstract)
    Xu, Zhou
    Lai, Xiaofan
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 704 - 715
  • [40] Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications
    Kellerer, Hans
    Strusevich, Vitaly A.
    ALGORITHMICA, 2010, 57 (04) : 769 - 795