Shape prediction on the basis of spectrum using neural networks

被引:1
|
作者
Zhao, Y. [1 ]
Fogler, M. M. [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
关键词
ANALYTIC DOMAINS; HEAR;
D O I
10.1103/PhysRevResearch.5.013110
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have developed a deep neural network that reconstructs the shape of a polygonal domain given the first hundred of its Dirichlet Laplacian eigenvalues. Having an encoder-decoder structure, the network maps input spectra to a latent space and then predicts the discretized image of the domain on a square grid. Tested on randomly generated pentagons, the predictions prove to be highly accurate for both concave and convex pentagons. Our analysis indicates that the network has discovered fundamental properties of the Laplacian operator, the scaling rule, and the continuous rotational symmetry. Additionally, the latent variables are strongly correlated with Weyl's parameters (area, perimeter, and a certain function of the angles) of the test polygons.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Long-Term Time-Series Prediction Using Radial Basis Function Neural Networks
    Alexandridis, Alex
    Famelis, Ioannis Th.
    Tsitouras, Charalambos
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [42] Prediction of Missing Data for Ozone Concentrations Using Support Vector Machines and Radial Basis Neural Networks
    Mileva-Boshkoska, Biljana
    Stankovski, Mile
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2007, 31 (04): : 425 - 430
  • [43] Prediction of cavitation vortex dynamics in the draft tube of a francis turbine using radial basis neural networks
    Marko Hočevar
    Brane Širok
    Bogdan Blagojevič
    Neural Computing & Applications, 2005, 14 : 229 - 234
  • [44] Prediction of cavitation vortex dynamics in the draft tube of a francis turbine using radial basis neural networks
    Hocevar, M
    Sirok, B
    Blagojevic, B
    NEURAL COMPUTING & APPLICATIONS, 2005, 14 (03): : 229 - 234
  • [45] Environment-adaptation mobile radio propagation prediction using radial basis function neural networks
    Chang, PR
    Yang, WH
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1997, 46 (01) : 155 - 160
  • [46] Freeway traffic prediction using neural networks
    Cheu, RL
    APPLICATIONS OF ADVANCED TECHNOLOGIES IN TRANSPORTATION, 1998, : 247 - 254
  • [47] Dynamic branch prediction using neural networks
    Steven, G
    Anguera, R
    Egan, C
    Steven, F
    Vintan, L
    EUROMICRO SYMPOSIUM ON DIGITAL SYSTEMS DESIGN, PROCEEDINGS, 2001, : 178 - 185
  • [48] RTL Delay Prediction Using Neural Networks
    Lopera, Daniela Sanchez
    Servadei, Lorenzo
    Kasi, Vishwa Priyanka
    Prebeck, Sebastian
    Ecker, Wolfgang
    2021 IEEE NORDIC CIRCUITS AND SYSTEMS CONFERENCE (NORCAS), 2021,
  • [49] Ventilation Liberation Prediction Using Neural Networks
    Yuan, J.
    Chiofolo, C. M.
    Winchell, R. J.
    Chong, D. H.
    Chbat, N. W.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201
  • [50] Prediction of pile capacity using neural networks
    Teh, CI
    Wong, KS
    Goh, ATC
    Jaritngam, S
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1997, 11 (02) : 129 - 138