Shape prediction on the basis of spectrum using neural networks

被引:1
|
作者
Zhao, Y. [1 ]
Fogler, M. M. [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
关键词
ANALYTIC DOMAINS; HEAR;
D O I
10.1103/PhysRevResearch.5.013110
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have developed a deep neural network that reconstructs the shape of a polygonal domain given the first hundred of its Dirichlet Laplacian eigenvalues. Having an encoder-decoder structure, the network maps input spectra to a latent space and then predicts the discretized image of the domain on a square grid. Tested on randomly generated pentagons, the predictions prove to be highly accurate for both concave and convex pentagons. Our analysis indicates that the network has discovered fundamental properties of the Laplacian operator, the scaling rule, and the continuous rotational symmetry. Additionally, the latent variables are strongly correlated with Weyl's parameters (area, perimeter, and a certain function of the angles) of the test polygons.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Prediction of shape defects over length of cold rotted sheet using artificial neural networks
    Raju, D. V.
    Iqbal, A.
    Trivedi, A. Kumar
    Mukhopadhyay, A.
    IRONMAKING & STEELMAKING, 2007, 34 (02) : 166 - 176
  • [32] Mobility prediction in wireless networks using neural networks
    Capka, J
    Boutaba, R
    MANAGEMENT OF MULTIMEDIA NETWORKS AND SERVICES, PROCEEDINGS, 2004, 3271 : 320 - 333
  • [33] Spectrum Occupancy Prediction based on adaptive Recurrent Neural Networks
    Umebayashi, Kenta
    Kasahara, Yoshiki
    Iwata, Hiroki
    Al-Tahmeesschi, Ahmed
    Vartiainen, Johanna
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [34] The neural basis for shape preferences
    Amir, Ori
    Biederman, Irving
    Hayworth, Kenneth J.
    VISION RESEARCH, 2011, 51 (20) : 2198 - 2206
  • [35] NEURAL BASIS OF SHAPE CONSTANCY
    GLASSMAN, RB
    PSYCHOLOGICAL REVIEW, 1975, 82 (05) : 386 - 386
  • [36] Prediction of enthalpy of alkanes by the use of radial basis function neural networks
    Yao, XJ
    Zhang, XY
    Zhang, RS
    Liu, MC
    Hu, ZD
    Fan, BT
    COMPUTERS & CHEMISTRY, 2001, 25 (05): : 475 - 482
  • [37] Adaptive Prediction of Forest Fire Behavior on the Basis of Recurrent Neural Networks
    Kozik, V. I.
    Nezhevenko, E. S.
    Feoktistov, A. S.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2013, 49 (03) : 250 - 259
  • [38] Rainfall Prediction using Spatial Convolutional Neural Networks and Recurrent Neural Networks
    Lestari, Nadia Dwi Puji
    Djamal, Esmeralda Contessa
    2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 12 - 17
  • [39] Rainfall Prediction using Spatial Convolutional Neural Networks and Recurrent Neural Networks
    Lestari, Nadia Dwi Puji
    Djamal, Esmeralda Contessa
    2022 International Conference on Data Science and Its Applications, ICoDSA 2022, 2022, : 12 - 17
  • [40] SUPER RESOLUTION USING RADIAL BASIS NEURAL NETWORKS
    Catalbas, Mehmet Cem
    Ozturk, Serkan
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,