A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images

被引:10
|
作者
Sarica, Beytullah [1 ]
Seker, Dursun Zafer [2 ]
Bayram, Bulent [3 ]
机构
[1] Istanbul Tech Univ, Grad Sch, Dept Appl Informat, TR-34469 Istanbul, Turkey
[2] Istanbul Tech Univ, Civil Engn Fac, Dept Geomatics Engn, TR-34469 Istanbul, Turkey
[3] Yildiz Tech Univ, Civil Engn Fac, Dept Geomatics Engn, TR-34220 Istanbul, Turkey
关键词
Multiple sclerosis (MS); MS lesion segmentation; MRI; U-net; Convolutional neural networks; Deep learning; Residual blocks; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1016/j.ijmedinf.2022.104965
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple Sclerosis (MS) is an autoimmune disease that causes brain and spinal cord lesions, which magnetic resonance imaging (MRI) can detect and characterize. Recently, deep learning methods have achieved remarkable results in the automated segmentation of MS lesions from MRI data. Hence, this study proposes a novel dense residual U-Net model that combines attention gate (AG), efficient channel attention (ECA), and Atrous Spatial Pyramid Pooling (ASPP) to enhance the performance of the automatic MS lesion segmentation using 3D MRI sequences. First, convolution layers in each block of the U-Net architecture are replaced by residual blocks and connected densely. Then, AGs are exploited to capture salient features passed through the skip connections. The ECA module is appended at the end of each residual block and each downsampling block of U-Net. Later, the bottleneck of U-Net is replaced with the ASSP module to extract multi-scale contextual information. Furthermore, 3D MR images of Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted (T1-w), and T2-weighted (T2-w) are exploited jointly to perform better MS lesion segmentation. The proposed model is validated on the publicly available ISBI2015 and MSSEG2016 challenge datasets. This model produced an ISBI score of 92.75, a mean Dice score of 66.88%, a mean positive predictive value (PPV) of 86.50%, and a mean lesion-wise true positive rate (LTPR) of 60.64% on the ISBI2015 testing set. Also, it achieved a mean Dice score of 67.27%, a mean PPV of 65.19%, and a mean sensitivity of 74.40% on the MSSEG2016 testing set. The results show that the proposed model performs better than the results of some experts and some of the other state-of-the-art methods realized related to this particular subject. Specifically, the best Dice score and the best LTPR are obtained on the ISBI2015 testing set by using the proposed model to segment MS lesions.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] GAIR-U-Net: 3D guided attention inception residual u-net for brain tumor segmentation using multimodal MRI images
    Rutoh, Evans Kipkoech
    Guang, Qin Zhi
    Bahadar, Noor
    Raza, Rehan
    Hanif, Muhammad Shehzad
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (06)
  • [42] 3D U-Net based method for fast segmentation of whole heart from CT images
    Novoselnik, Filip
    Leventic, Hrvoje
    Galic, Irena
    Babin, Danilo
    PROCEEDINGS OF 2022 64TH INTERNATIONAL SYMPOSIUM ELMAR-2022, 2022, : 159 - 164
  • [43] Deep Learning for the Automatic Segmentation of Extracranial Venous Malformations of the Head and Neck from MR Images Using 3D U-Net
    Ryu, Jeong Yeop
    Hong, Hyun Ki
    Cho, Hyun Geun
    Lee, Joon Seok
    Yoo, Byeong Cheol
    Choi, Min Hyeok
    Chung, Ho Yun
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (19)
  • [44] Multimodal Connectivity-Guided Glioma Segmentation From Magnetic Resonance Images via Cascaded 3D Residual U-Net
    Sun, Xiaoyan
    Hu, Chuhan
    He, Wenhan
    Yuan, Zhenming
    Zhang, Jian
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (06)
  • [45] Automatic Segmentation on Liver With 3D U-Net, Pixel Deconvolutional and Dense Transformer Network
    Yao, H.
    Chang, J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E366 - E366
  • [46] Dilated multi-scale residual attention (DMRA) U-Net: three-dimensional (3D) dilated multi-scale residual attention U-Net for brain tumor segmentation
    Zhang, Lihong
    Li, Yuzhuo
    Liang, Yingbo
    Xu, Chongxin
    Liu, Tong
    Sun, Junding
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (10) : 7249 - 7264
  • [47] 3D Neuron Segmentation Based on 3D DSAC U-Net
    Guilin University of Electronic Technology, School of Computer Science and Information Security, Guilin
    541004, China
    不详
    514000, China
    不详
    541004, China
    不详
    541004, China
    Proc. - Int. Conf. Digit. Home, ICDH, (322-326):
  • [48] Medical Image Segmentation Based on 3D U-net
    Chen, Silu
    Hu, Guanghao
    Sun, Jun
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 130 - 133
  • [49] A Multi Brain Tumor Region Segmentation Model Based on 3D U-Net
    Li, Zhenwei
    Wu, Xiaoqin
    Yang, Xiaoli
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [50] Pseudo-3D Network for Multi-sequence Cardiac MR Segmentation
    Liu, Tao
    Tian, Yun
    Zhao, Shifeng
    Huang, XiaoYing
    Xu, Yang
    Jiang, Gaoyuan
    Wang, Qingjun
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES, 2020, 12009 : 237 - 245