A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images

被引:10
|
作者
Sarica, Beytullah [1 ]
Seker, Dursun Zafer [2 ]
Bayram, Bulent [3 ]
机构
[1] Istanbul Tech Univ, Grad Sch, Dept Appl Informat, TR-34469 Istanbul, Turkey
[2] Istanbul Tech Univ, Civil Engn Fac, Dept Geomatics Engn, TR-34469 Istanbul, Turkey
[3] Yildiz Tech Univ, Civil Engn Fac, Dept Geomatics Engn, TR-34220 Istanbul, Turkey
关键词
Multiple sclerosis (MS); MS lesion segmentation; MRI; U-net; Convolutional neural networks; Deep learning; Residual blocks; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1016/j.ijmedinf.2022.104965
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple Sclerosis (MS) is an autoimmune disease that causes brain and spinal cord lesions, which magnetic resonance imaging (MRI) can detect and characterize. Recently, deep learning methods have achieved remarkable results in the automated segmentation of MS lesions from MRI data. Hence, this study proposes a novel dense residual U-Net model that combines attention gate (AG), efficient channel attention (ECA), and Atrous Spatial Pyramid Pooling (ASPP) to enhance the performance of the automatic MS lesion segmentation using 3D MRI sequences. First, convolution layers in each block of the U-Net architecture are replaced by residual blocks and connected densely. Then, AGs are exploited to capture salient features passed through the skip connections. The ECA module is appended at the end of each residual block and each downsampling block of U-Net. Later, the bottleneck of U-Net is replaced with the ASSP module to extract multi-scale contextual information. Furthermore, 3D MR images of Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted (T1-w), and T2-weighted (T2-w) are exploited jointly to perform better MS lesion segmentation. The proposed model is validated on the publicly available ISBI2015 and MSSEG2016 challenge datasets. This model produced an ISBI score of 92.75, a mean Dice score of 66.88%, a mean positive predictive value (PPV) of 86.50%, and a mean lesion-wise true positive rate (LTPR) of 60.64% on the ISBI2015 testing set. Also, it achieved a mean Dice score of 67.27%, a mean PPV of 65.19%, and a mean sensitivity of 74.40% on the MSSEG2016 testing set. The results show that the proposed model performs better than the results of some experts and some of the other state-of-the-art methods realized related to this particular subject. Specifically, the best Dice score and the best LTPR are obtained on the ISBI2015 testing set by using the proposed model to segment MS lesions.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation
    Kadia, Dhaval D.
    Alom, Md Zahangir
    Burada, Ranga
    Nguyen, Tam, V
    Asari, Vijayan K.
    IEEE ACCESS, 2021, 9 : 88835 - 88843
  • [22] New MS lesion segmentation with deep residual attention gate U-Net utilizing 2D slices of 3D MR images
    Sarica, Beytullah
    Seker, Dursun Zafer
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [23] Whole Heart Segmentation from CT images Using 3D U-Net architecture
    Habijan, Marija
    Leventic, Hrvoje
    Galic, Irena
    Babin, Danilo
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2019), 2019, : 121 - 126
  • [24] Knowledge-Based Multi-sequence MR Segmentation via Deep Learning with a Hybrid U-Net plus plus Model
    Ren, Jinchang
    Sun, He
    Huang, Yumin
    Gao, Hao
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES, 2020, 12009 : 280 - 289
  • [25] U-Net based automatic carotid plaque segmentation from 3D ultrasound images
    Zhou, Ran
    Ma, Wei
    Fenster, Aaron
    Ding, Mingyue
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [26] 3D U-Net for automated detection of multiple sclerosis lesions: utility of transfer learning from other pathologies
    Wahlig, Stephen G.
    Nedelec, Pierre
    Weiss, David A.
    Rudie, Jeffrey D.
    Sugrue, Leo P.
    Rauschecker, Andreas M.
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [27] MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks
    Tie, Juhong
    Peng, Hui
    Zhou, Jiliu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (02): : 427 - 445
  • [28] MRI brain tumor segmentation using 3D U-net with dense encoder blocks and residual decoder blocks
    Tie, Juhong
    Peng, Hui
    Zhou, Jiliu
    Tie, Juhong (tiejuhong@cuit.edu.cn); Zhou, Jiliu (zhoujl@scu.edu.cn), 1600, Tech Science Press (128): : 427 - 445
  • [29] 3D U-Net for Brain Tumour Segmentation
    Mehta, Raghav
    Arbel, Tal
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 254 - 266
  • [30] A 3D framework for segmentation of carotid artery vessel wall and identification of plaque compositions in multi-sequence MR images
    Wang, Jian
    Yu, Fan
    Zhang, Mengze
    Lu, Jie
    Qian, Zhen
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2024, 116