A solar-assisted power-to-hydrogen system based on proton-conducting solid oxide electrolyzer cells

被引:6
|
作者
Roy, Dibyendu [1 ]
Samanta, Samiran [2 ]
机构
[1] Indian Inst Engn Sci & Technol, Dept Mech Engn, Howrah 711103, W Bengal, India
[2] Deemed Univ, Kalinga Inst Ind Technol, Sch Mech Engn, Bhubaneswar 24, Orissa, India
关键词
Solar energy; Optimization; Electrolyzer; Economic analysis; Hydrogen; HIGH-TEMPERATURE; FUEL-CELLS; PERFORMANCE EVALUATION; STEAM ELECTROLYZER; COST EVALUATION; DRIVEN; SOFC; ENERGY; ELECTRICITY; SIMULATION;
D O I
10.1016/j.renene.2023.119562
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Green hydrogen is anticipated to play a major role in a Net-Zero 2050 scenario since it can be produced using sustainable renewable energy sources, resulting in no greenhouse gas emissions. Furthermore, hydrogen has a high energy density and is readily stored and transferred, making it a versatile and convenient fuel for a broad range of applications. In this regard, an attempt has been made to study a solar-assisted power-to-hydrogen system based on proton-conducting solid oxide electrolyzer cells. The article presents a detailed thermoeconomic analysis along with genetic algorithm-based optimization studies of the system. The optimum values of energetic efficiency and the cost of hydrogen are found to be 25.15 % and 1.021 $/kg, respectively. Exergy analysis reveals that the highest exergy destruction occurs in solar photovoltaic thermal (67.83 %) and parabolic trough solar collector (13.31 %), respectively. Furthermore, performance results of the solar-assisted power-to-hydrogen system are compared with other hydrogen production technologies.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Modeling of a planar solid oxide fuel cell based on proton-conducting electrolyte
    Ni, Meng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (12) : 1027 - 1041
  • [32] The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells
    Hou, Jie
    Qian, Jing
    Bi, Lei
    Gong, Zheng
    Peng, Ranran
    Liu, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) : 2207 - 2215
  • [33] Electrode materials for solid oxide fuel cells with proton-conducting electrolyte based on CaZrO3
    Dunyushkina, L. A.
    Kuz'min, A. V.
    Kuimov, V. M.
    Khaliullina, A. Sh.
    Plekhanov, M. S.
    Bogdanovich, N. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2017, 53 (02) : 196 - 204
  • [34] Electrode materials for solid oxide fuel cells with proton-conducting electrolyte based on CaZrO3
    L. A. Dunyushkina
    A. V. Kuz’min
    V. M. Kuimov
    A. Sh. Khaliullina
    M. S. Plekhanov
    N. M. Bogdanovich
    Russian Journal of Electrochemistry, 2017, 53 : 196 - 204
  • [35] Triple-Conducting Layered Perovskites as Cathode Materials for Proton-Conducting Solid Oxide Fuel Cells
    Kim, Junyoung
    Sengodan, Sivaprakash
    Kwon, Goeun
    Ding, Dong
    Shin, Jeeyoung
    Liu, Meilin
    Kim, Guntae
    CHEMSUSCHEM, 2014, 7 (10) : 2811 - 2815
  • [36] Topological Ion Optimized Composite Cathode for Proton-Conducting Solid Oxide Fuel Cells
    Tang, Shurui
    Fu, Min
    Qin, Zhenhao
    Gao, Yang
    Tao, Zetian
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [37] Multifactor theoretical analysis of current leakage in proton-conducting solid oxide fuel cells
    Qiu, Ruiming
    Lian, Wenchao
    Ou, Yongzhen
    Tao, Zetian
    Cui, Yuxin
    Tian, Zhipeng
    Wang, Chao
    Chen, Ying
    Liu, Jianping
    Lei, Libin
    Zhang, Jihao
    JOURNAL OF POWER SOURCES, 2021, 505
  • [38] Unveiling the importance of the interface in nanocomposite cathodes for proton-conducting solid oxide fuel cells
    Yin, Yanru
    Wang, Yifan
    Yang, Nan
    Bi, Lei
    EXPLORATION, 2024, 4 (04):
  • [39] Insights into CO poisoning in high performance proton-conducting solid oxide fuel cells
    Yan, Ning
    Fu, Xian-Zhu
    Chuang, Karl T.
    Luo, Jing-Li
    JOURNAL OF POWER SOURCES, 2014, 254 : 48 - 54
  • [40] Composite manganate oxygen electrode enhanced with iron oxide nanocatalyst for high temperature steam electrolysis in a proton-conducting solid oxide electrolyzer
    Li, Huaxin
    Chen, Xiaoli
    Chen, Shigang
    Wu, Yucheng
    Xie, Kui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (25) : 7920 - 7931