Insights into CO poisoning in high performance proton-conducting solid oxide fuel cells

被引:8
|
作者
Yan, Ning [1 ]
Fu, Xian-Zhu [1 ]
Chuang, Karl T. [1 ]
Luo, Jing-Li [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Proton-conducting solid oxide fuel cells; Syngas; CO poisoning; Carbon deposition; MIXED IONIC-CONDUCTION; CHEMICAL-STABILITY; OXIDATION; CATALYSTS; GAS; SOFC;
D O I
10.1016/j.jpowsour.2013.12.069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High performance anode supported proton-conducting solid oxide fuel cells (PC-SOFC) were fabricated and their performance in syngas was studied. PC-SOFC button cells produced a maximum power density of 812 mW cm(-2) in H-2 at 750 degrees C. It was found that the CO-containing feed streams could drastically degrade the performance of PC-SOFC. Based on the experimental results and the theoretical analysis, the detailed process of the CO-induced Ni catalyst deactivation was identified. This process could be divided into three distinguishable stages during the continuous exposure of the Ni catalyst in the CO-containing environment. The first stage could be described using the CO surface active site blocking mechanism, which was further confirmed by CO/H-2 competitive adsorption model. The second stage deactivation was proposed to be related to the carbon deposition at TPB (Triple-phase Boundary). The deactivation during this stage was accelerated by the electrochemical conversion of H-2. The last stage was attributed to the coking of Ni catalyst and the resulted metal dusting effect. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 54
页数:7
相关论文
共 50 条
  • [1] New Insights into the Proton-Conducting Solid Oxide Fuel Cells
    Cao, Jiafeng
    Ji, Yuexia
    Shao, Zongping
    [J]. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (01): : 83 - 92
  • [2] Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance
    Xu, Xi
    Wang, Huiqiang
    Fronzi, Marco
    Wang, Xianfen
    Bi, Lei
    Traversa, Enrico
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) : 20624 - 20632
  • [3] Scientometric review of proton-conducting solid oxide fuel cells
    Bello, Idris Temitope
    Zhai, Shuo
    Zhao, Siyuan
    Li, Zheng
    Yu, Na
    Ni, Meng
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (75) : 37406 - 37428
  • [4] Tailoring electronic structure of perovskite cathode for proton-conducting solid oxide fuel cells with high performance
    Xu, Xi
    Xu, Yangsen
    Ma, Jinming
    Yin, Yanru
    Fronzi, Marco
    Wang, Xianfen
    Bi, Lei
    [J]. JOURNAL OF POWER SOURCES, 2021, 489
  • [5] Current status of proton-conducting solid oxide fuel cells development
    Lefebvre-Joud, Florence
    Gauthier, Gilles
    Mougin, Julie
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2009, 39 (04) : 535 - 543
  • [6] A functionally graded cathode for proton-conducting solid oxide fuel cells
    Yang, Chunli
    Xu, Qiming
    [J]. JOURNAL OF POWER SOURCES, 2012, 212 : 186 - 191
  • [7] Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells
    Liu, Fan
    Duan, Chuancheng
    [J]. SUSTAINABILITY, 2021, 13 (09)
  • [8] Current status of proton-conducting solid oxide fuel cells development
    Florence Lefebvre-Joud
    Gilles Gauthier
    Julie Mougin
    [J]. Journal of Applied Electrochemistry, 2009, 39 : 535 - 543
  • [9] Development of Multilayer Anodes For Proton-Conducting Solid Oxide Fuel Cells
    Taillades, M.
    Batocchi, P.
    Essoumhi, A.
    Taillades, G.
    Jones, D.
    Roziere, J.
    [J]. SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 2193 - 2200
  • [10] Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas
    Ni, Meng
    Shao, Zongping
    Chan, Kwong Yu
    [J]. ENERGIES, 2014, 7 (07): : 4381 - 4396