BOUNDEDNESS OF A CHEMOTAXIS-CONVECTION MODEL DESCRIBING TUMOR-INDUCED ANGIOGENESIS

被引:1
|
作者
Jin, Haiyang [1 ]
Xu, Kaiying [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
关键词
boundedness; convection; chemotaxis; tumor invasion; BLOW-UP; SYSTEM; STABILIZATION;
D O I
10.1007/s10473-023-0110-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the parabolic-parabolic-elliptic system {u(t) = Delta u - chi del . (u del v) + xi(1)del . (u(m)del w), x is an element of Omega, t > 0, {v(t) = Delta v - xi(2)del . (v del w) + u - v, x is an element of Omega, t > 0, 0 = Delta w + u - 1/vertical bar Omega vertical bar integral(Omega)u, integral(Omega)w = 0, x is an element of Omega, t > 0, partial derivative u/partial derivative nu = partial derivative v/partial derivative nu = 0, x is an element of partial derivative Omega, t < 0. u(x,0) = u(0)(x), v(x, 0) = v(0)(x), x is an element of Omega in a bounded domain Omega subset of R-n with a smooth boundary, where the parameters chi, xi(1), xi(2) are positive constants and m >= 1. Based on the coupled energy estimates, the boundedness of the global classical solution is established in any dimensions (n >= 1) provided that m > 1.
引用
收藏
页码:156 / 168
页数:13
相关论文
共 50 条
  • [31] GLOBAL DYNAMICS IN A CHEMOTAXIS MODEL DESCRIBING TUMOR ANGIOGENESIS WITH/WITHOUT MITOSIS IN ANY DIMENSION
    Chu, Jiawei
    Jin, Hai-yang
    Xiang, Tian
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (04) : 1055 - 1095
  • [32] Two-dimensional discrete mathematical model of tumor-induced angiogenesis
    赵改平
    陈二云
    吴洁
    许世雄
    M.W.Collins
    龙泉
    AppliedMathematicsandMechanics(EnglishEdition), 2009, 30 (04) : 455 - 462
  • [33] Two-dimensional discrete mathematical model of tumor-induced angiogenesis
    Gai-ping Zhao
    Er-yun Chen
    Jie Wu
    Shi-xiong Xu
    M. W. Collins
    Quan Long
    Applied Mathematics and Mechanics, 2009, 30 : 455 - 462
  • [34] Two-dimensional discrete mathematical model of tumor-induced angiogenesis
    Zhao, Gai-ping
    Chen, Er-yun
    Wu, Jie
    Xu, Shi-xiong
    Collins, M. W.
    Long, Quan
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (04) : 455 - 462
  • [35] Stochastic model of tumor-induced angiogenesis: Ensemble averages and deterministic equations
    Terragni, F.
    Carretero, M.
    Capasso, V.
    Bonilla, L. L.
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [36] A Delayed Dynamical Model Describing the Effect of Tumor-Induced Vascular Endothelial Growth Factor on Angiogenesis: Backward Bifurcations and Global Dynamics
    Chen, Jiawen
    Ma, Wanbiao
    Feng, Zhaosheng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (08):
  • [37] Simulating tumor-induced angiogenesis in macroscopic systems
    Behle, Eric
    Herold, Julian M.
    Schug, Alexander H.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 279A - 279A
  • [38] TUMOR-INDUCED ANGIOGENESIS - LACK OF INHIBITION BY IRRADIATION
    AUERBACH, R
    ARENSMAN, R
    KUBAI, L
    FOLKMAN, J
    INTERNATIONAL JOURNAL OF CANCER, 1975, 15 (02) : 241 - 245
  • [39] Mechanism and its regulation of tumor-induced angiogenesis
    Gupta, MK
    Qin, RY
    WORLD JOURNAL OF GASTROENTEROLOGY, 2003, 9 (06) : 1144 - 1155
  • [40] A nonlocal model describing tumor angiogenesis
    Granero-Belinchon, Rafael
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 227