Mitigation of frequency collisions in superconducting quantum processors

被引:11
|
作者
Osman, Amr [1 ]
Fernandez-Pendas, Jorge [1 ]
Warren, Christopher [1 ]
Kosen, Sandoko [1 ]
Scigliuzzo, Marco [2 ,3 ]
Kockum, Anton Frisk [1 ]
Tancredi, Giovanna [1 ]
Roudsari, Anita Fadavi [1 ]
Bylander, Jonas [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[2] Swiss Fed Inst Technol Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Ctr Quantum Sci & Engn, CH-1015 Lausanne, Switzerland
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
基金
欧盟地平线“2020”;
关键词
Cross talks - Frequency collision - Josephson-junction - Quantum processors - Qubit parameters - Reproducibilities - Scaling-up - Standard deviation - Transmon qubit - Uncertainty;
D O I
10.1103/PhysRevResearch.5.043001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The reproducibility of qubit parameters is a challenge for scaling up superconducting quantum processors. Signal cross talk imposes constraints on the frequency separation between neighboring qubits. The frequency uncertainty of transmon qubits arising from the fabrication process is attributed to deviations in the Josephson junction area, tunnel barrier thickness, and the qubit shunt capacitor. We decrease the sensitivity to these variations by fabricating larger Josephson junctions and reduce the wafer-level standard deviation in resistance down to 2%. We characterize 32 identical transmon qubits and demonstrate the reproducibility of the qubit frequencies with a 40 MHz standard deviation (i.e., 1%) with qubit quality factors exceeding 2 million. We perform two-level-system (TLS) spectroscopy and observe no significant increase in the number of TLSs causing qubit relaxation. We further show by simulation that for our parametric-gate architecture, and accounting only for errors caused by the uncertainty of the qubit frequency, we can scale up to 100 qubits with an average of only three collisions between quantum-gate transition frequencies, assuming 2% cross talk and 99.9% target gate fidelity.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Low-loss interconnects for modular superconducting quantum processors
    Niu, Jingjing
    Zhang, Libo
    Liu, Yang
    Qiu, Jiawei
    Huang, Wenhui
    Huang, Jiaxiang
    Jia, Hao
    Liu, Jiawei
    Tao, Ziyu
    Wei, Weiwei
    Zhou, Yuxuan
    Zou, Wanjing
    Chen, Yuanzhen
    Deng, Xiaowei
    Deng, Xiuhao
    Hu, Changkang
    Hu, Ling
    Li, Jian
    Tan, Dian
    Xu, Yuan
    Yan, Fei
    Yan, Tongxing
    Liu, Song
    Zhong, Youpeng
    Cleland, Andrew N.
    Yu, Dapeng
    NATURE ELECTRONICS, 2023, 6 (03) : 235 - 241
  • [22] Model-based frequency optimization for frequency-tunable superconducting processors
    Qiujiang Guo
    Science China(Physics,Mechanics & Astronomy), 2025, (02) : 197 - 198
  • [23] Mitigating Errors on Superconducting Quantum Processors Through Fuzzy Clustering
    Ahmad, Halima G.
    Schiattarella, Roberto
    Mastrovito, Pasquale
    Chiatto, Angela
    Levochkina, Anna
    Esposito, Martina
    Montemurro, Domenico
    Pepe, Giovanni P.
    Bruno, Alessandro
    Tafuri, Francesco
    Vitiello, Autilia
    Acampora, Giovanni
    Massarotti, Davide
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (07)
  • [24] In-situ bandaged Josephson junctions for superconducting quantum processors
    Bilmes, Alexander
    Haendel, Alexander K.
    Volosheniuk, Serhii
    Ustinov, Alexey, V
    Lisenfeld, Juergen
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2021, 34 (12):
  • [25] Low-loss interconnects for modular superconducting quantum processors
    Jingjing Niu
    Libo Zhang
    Yang Liu
    Jiawei Qiu
    Wenhui Huang
    Jiaxiang Huang
    Hao Jia
    Jiawei Liu
    Ziyu Tao
    Weiwei Wei
    Yuxuan Zhou
    Wanjing Zou
    Yuanzhen Chen
    Xiaowei Deng
    Xiuhao Deng
    Changkang Hu
    Ling Hu
    Jian Li
    Dian Tan
    Yuan Xu
    Fei Yan
    Tongxing Yan
    Song Liu
    Youpeng Zhong
    Andrew N. Cleland
    Dapeng Yu
    Nature Electronics, 2023, 6 : 235 - 241
  • [26] Quantum error mitigation by hidden inverses protocol in superconducting quantum devices
    Leyton-Ortega, V
    Majumder, S.
    Pooser, R. C.
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (01)
  • [27] Integration of Through-Sapphire Substrate Machining with Superconducting Quantum Processors
    Acharya, Narendra
    Armstrong, Robert
    Balaji, Yashwanth
    Crawford, Kevin G.
    Gates, James C.
    Gow, Paul C.
    Kennedy, Oscar W.
    Pothuraju, Renuka Devi
    Shahbazi, Kowsar
    Shelly, Connor D.
    ADVANCED MATERIALS, 2025, 37 (09)
  • [28] Timing and Resource-Aware Mapping of Quantum Circuits to Superconducting Processors
    Lao, Lingling
    van Someren, Hans
    Ashraf, Imran
    Almudever, Carmen G.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (02) : 359 - 371
  • [29] Shadow Distillation: Quantum Error Mitigation with Classical Shadows for Near-Term Quantum Processors
    Seif, Alireza
    Cian, Ze-Pei
    Zhou, Sisi
    Chen, Senrui
    Jiang, Liang
    PRX QUANTUM, 2023, 4 (01):
  • [30] Multiqubit time-varying quantum channels for NISQ-era superconducting quantum processors
    Martinez, Josu Etxezarreta
    Fuentes, Patricio
    iOlius, Antonio deMarti
    Garcia-Frias, Javier
    Fonollosa, Javier Rodriguez
    Crespo, Pedro M.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):