Mitigation of frequency collisions in superconducting quantum processors

被引:11
|
作者
Osman, Amr [1 ]
Fernandez-Pendas, Jorge [1 ]
Warren, Christopher [1 ]
Kosen, Sandoko [1 ]
Scigliuzzo, Marco [2 ,3 ]
Kockum, Anton Frisk [1 ]
Tancredi, Giovanna [1 ]
Roudsari, Anita Fadavi [1 ]
Bylander, Jonas [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[2] Swiss Fed Inst Technol Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Ctr Quantum Sci & Engn, CH-1015 Lausanne, Switzerland
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
基金
欧盟地平线“2020”;
关键词
Cross talks - Frequency collision - Josephson-junction - Quantum processors - Qubit parameters - Reproducibilities - Scaling-up - Standard deviation - Transmon qubit - Uncertainty;
D O I
10.1103/PhysRevResearch.5.043001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The reproducibility of qubit parameters is a challenge for scaling up superconducting quantum processors. Signal cross talk imposes constraints on the frequency separation between neighboring qubits. The frequency uncertainty of transmon qubits arising from the fabrication process is attributed to deviations in the Josephson junction area, tunnel barrier thickness, and the qubit shunt capacitor. We decrease the sensitivity to these variations by fabricating larger Josephson junctions and reduce the wafer-level standard deviation in resistance down to 2%. We characterize 32 identical transmon qubits and demonstrate the reproducibility of the qubit frequencies with a 40 MHz standard deviation (i.e., 1%) with qubit quality factors exceeding 2 million. We perform two-level-system (TLS) spectroscopy and observe no significant increase in the number of TLSs causing qubit relaxation. We further show by simulation that for our parametric-gate architecture, and accounting only for errors caused by the uncertainty of the qubit frequency, we can scale up to 100 qubits with an average of only three collisions between quantum-gate transition frequencies, assuming 2% cross talk and 99.9% target gate fidelity.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Microwave Package Design for Superconducting Quantum Processors
    Huang, Sihao
    Lienhard, Benjamin
    Calusine, Greg
    Vepsalainen, Antti
    Braumuller, Jochen
    Kim, David K.
    Melville, Alexander J.
    Niedzielski, Bethany M.
    Yoder, Jonilyn L.
    Kannan, Bharath
    Orlando, Terry P.
    Gustavsson, Simon
    Oliver, William D.
    PRX QUANTUM, 2021, 2 (02):
  • [12] QUANTUM UNSUPERVISED AND SUPERVISED LEARNING ON SUPERCONDUCTING PROCESSORS
    Sarma, Abhijat
    Chatterjee, Rupak
    Gili, Kaitlin
    Yu, Ting
    QUANTUM INFORMATION & COMPUTATION, 2020, 20 (7-8) : 541 - 552
  • [13] Manufacturing low dissipation superconducting quantum processors
    Nersisyan, Ani
    Poletto, Stefano
    Alidoust, Nasser
    Manenti, Riccardo
    Renzas, Russ
    Bui, Cat-Vu
    Vu, Kim
    Whyland, Tyler
    Mohan, Yuvraj
    Sete, Eyob A.
    Stanwyck, Sam
    Bestwick, Andrew
    Reagor, Matthew
    2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
  • [14] Quantum unsupervised and supervised learning on superconducting processors
    Sarma, Abhijat
    Chatterjee, Rupak
    Gili, Kaitlin
    Yu, Ting
    Quantum Information and Computation, 2020, 20 (7-8): : 541 - 552
  • [15] Tantalum airbridges for scalable superconducting quantum processors
    Bu, Kunliang
    Huai, Sainan
    Zhang, Zhenxing
    Li, Dengfeng
    Li, Yuan
    Hu, Jingjing
    Yang, Xiaopei
    Dai, Maochun
    Cai, Tianqi
    Zheng, Yi-Cong
    Zhang, Shengyu
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [16] Algorithmic Error Mitigation Scheme for Current Quantum Processors
    Suchsland, Philippe
    Tacchino, Francesco
    Fischer, Mark H.
    Neupert, Titus
    Barkoutsos, Panagiotis Kl.
    Tavernelli, Ivano
    QUANTUM, 2021, 5
  • [17] A superconducting quantum processor architecture design method for improving performance and reducing frequency collisions
    Yang, Tian
    Wang, Weilong
    Wang, Lixin
    Zhao, Bo
    Liang, Chen
    Shan, Zheng
    RESULTS IN PHYSICS, 2023, 53
  • [18] Quantum computation with universal error mitigation on a superconducting quantum processor
    Song, Chao
    Cui, Jing
    Wang, H.
    Hao, J.
    Feng, H.
    Li, Ying
    SCIENCE ADVANCES, 2019, 5 (09):
  • [19] Design Methodologies for Integrated Quantum Frequency Processors
    Nussbaum, Benjamin E.
    Pizzimenti, Andrew J.
    Lingaraju, Navin B.
    Lu, Hsuan-Hao
    Lukens, Joseph M.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (23) : 7648 - 7657
  • [20] Model-based frequency optimization for frequency-tunable superconducting processors
    Guo, Qiujiang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2025, 68 (02)