Machine learning approach for prediction of total electron content and classification of ionospheric scintillations over Visakhapatnam region

被引:1
|
作者
Nimmakayala, Shiva Kumar [1 ]
Dutt, V. B. S. Srilatha Indira [1 ]
机构
[1] GITAM Deemed be Univ, GITAM Sch Technol, Dept EECE, Hyderabad 530045, Andhra Pradesh, India
关键词
SOLAR-ACTIVITY; GPS; MULTIPATH; PHASE;
D O I
10.1063/5.0176196
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ionospheric scintillations, which are due to ionospheric plasma density anomalies, negatively impact trans-ionospheric signals and the positioning accuracy of the global navigation satellite system (GNSS). One of the crucial variables for comprehending space weather conditions is the total electron content (TEC) of the ionosphere. It is vital to predict the ionospheric TEC before making efforts to enhance the GNSS system. In this article, the long short-term memory machine learning approach for TEC prediction is presented, based on which the ionospheric phase scintillations are identified and classified using popular classifiers: support vector machines and decision trees. In this article, the comparative analysis of these classifiers is presented using the standard performance metrics: accuracy, recall, precision, and F1 score.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Total electron content and scintillations over Maseno, Kenya, during high solar activity year
    G. E. Omondi
    P. Baki
    B. O. Ndinya
    Acta Geophysica, 2019, 67 : 1661 - 1670
  • [32] Spatiotemporal Prediction of Ionospheric Total Electron Content Based on ED-ConvLSTM
    Li, Liangchao
    Liu, Haijun
    Le, Huijun
    Yuan, Jing
    Shan, Weifeng
    Han, Ying
    Yuan, Guoming
    Cui, Chunjie
    Wang, Junling
    REMOTE SENSING, 2023, 15 (12)
  • [33] Optimal Transformer Modeling by Space Embedding for Ionospheric Total Electron Content Prediction
    Lin, Mengying
    Zhu, Xuefen
    Tu, Gangyi
    Chen, Xiyaun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [34] Global Ionospheric Total Electron Content Prediction Based on Spatiotemporal Network Model
    Wang, Hongyue
    Lin, Xu
    Zhang, Qingqing
    Chen, Changxin
    Cheng, Lin
    Wang, Zhen
    CHINA SATELLITE NAVIGATION CONFERENCE PROCEEDINGS, CSNC 2022, VOL II, 2022, 909 : 153 - 162
  • [35] Total electron content and scintillations over Maseno, Kenya, during high solar activity year
    Omondi, G. E.
    Baki, P.
    Ndinya, B. O.
    ACTA GEOPHYSICA, 2019, 67 (06) : 1661 - 1670
  • [36] Ionospheric total electron content and critical frequencies over Europe at solar minimum
    Cander, Ljiljana R.
    Ciraolo, Luigi
    ACTA GEOPHYSICA, 2010, 58 (03): : 468 - 490
  • [37] Ionospheric total electron content and critical frequencies over Europe at solar minimum
    Ljiljana R. Cander
    Luigi Ciraolo
    Acta Geophysica, 2010, 58 : 468 - 490
  • [38] RECONSTRUCTION OF IONOSPHERIC CRITICAL FREQUENCIES BASED ON THE TOTAL ELECTRON CONTENT OVER BULGARIA
    Bojilova, Rumiana
    Mukhtarov, Plamen
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (01): : 110 - 119
  • [39] Prediction of Ionospheric Scintillations Using Machine Learning Techniques during Solar Cycle 24 across the Equatorial Anomaly
    Nasurudiin, Sebwato
    Yoshikawa, Akimasa
    Elsaid, Ahmed
    Mahrous, Ayman
    ATMOSPHERE, 2024, 15 (10)
  • [40] Analysis of the Ionospheric Total Electron Content during the Series of September 2017 Solar Flares over the Philippine - Taiwan Region
    Mendoza, Merlin M.
    Macalalad, Ernest P.
    Juadines, Kyle Ezekiel S.
    2019 6TH INTERNATIONAL CONFERENCE ON SPACE SCIENCE AND COMMUNICATION (ICONSPACE2019), 2019, : 182 - 185