Machine learning approach for prediction of total electron content and classification of ionospheric scintillations over Visakhapatnam region

被引:1
|
作者
Nimmakayala, Shiva Kumar [1 ]
Dutt, V. B. S. Srilatha Indira [1 ]
机构
[1] GITAM Deemed be Univ, GITAM Sch Technol, Dept EECE, Hyderabad 530045, Andhra Pradesh, India
关键词
SOLAR-ACTIVITY; GPS; MULTIPATH; PHASE;
D O I
10.1063/5.0176196
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ionospheric scintillations, which are due to ionospheric plasma density anomalies, negatively impact trans-ionospheric signals and the positioning accuracy of the global navigation satellite system (GNSS). One of the crucial variables for comprehending space weather conditions is the total electron content (TEC) of the ionosphere. It is vital to predict the ionospheric TEC before making efforts to enhance the GNSS system. In this article, the long short-term memory machine learning approach for TEC prediction is presented, based on which the ionospheric phase scintillations are identified and classified using popular classifiers: support vector machines and decision trees. In this article, the comparative analysis of these classifiers is presented using the standard performance metrics: accuracy, recall, precision, and F1 score.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Modeling and Prediction of Ionospheric Total Electron Content by Time Series Analysis
    Li, Xiuhai
    Guo, Dazhi
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 2, 2010, : 375 - 379
  • [22] DIURNAL VARIATION OF TOTAL IONOSPHERIC ELECTRON CONTENT OVER CENTRAL ITALY
    CHECCACCI, PF
    DEGIORGI.MT
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1966, 28 (01): : 113 - +
  • [23] Prediction of ionospheric total electron content using adaptive neural network with in-situ learning algorithm
    Acharya, Rajat
    Roy, Bijoy
    Sivaraman, M. R.
    Dasgupta, Ashish
    ADVANCES IN SPACE RESEARCH, 2011, 47 (01) : 115 - 123
  • [24] A deep learning approach for the prediction of ionospheric total electron content (TEC) based on combined prediction and two-step loss fine-tuning
    Deng, Mingjun
    Li, Keyu
    Liu, Ning
    Bu, Lijing
    Zhang, Zhengpeng
    Wang, Chengjun
    Yang, Yin
    Nie, Xiaoting
    MEASUREMENT, 2025, 248
  • [25] A study on the variability of ionospheric total electron content over the East African low-latitude region and storm time ionospheric variations
    Olwendo, O. J.
    Yamazaki, Yosuke
    Cilliers, P. J.
    Baki, P.
    Doherty, P.
    RADIO SCIENCE, 2016, 51 (09) : 1503 - 1518
  • [26] Evolutionary Prediction of Total Electron Content over Cyprus
    Agapitos, Alexandros
    Konstantinidis, Andreas
    Haralambous, Haris
    Papadopoulos, Harris
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, 2010, 339 : 387 - +
  • [27] Analysis of chaotic properties and nonlinear prediction of ionospheric total electron content over 120°E magnetism equator
    Ke Xuan
    Wan Wei-Xing
    Ning Bai-Qi
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2006, 49 (05): : 1243 - 1249
  • [28] GIMLi: Global Ionospheric total electron content model based on machine learning (vol 25, 19, 2021)
    Zhukov, Aleksei V.
    Yasyukevich, Yury V.
    Bykov, Aleksei E.
    GPS SOLUTIONS, 2021, 25 (01)
  • [29] The effect of geomagnetic storm on ionospheric total electron content at the equatorial anomaly region
    Liu, JY
    Tsai, HF
    Wu, CC
    Tseng, CL
    Tsai, LC
    Tsai, WH
    Liou, K
    Chao, JK
    IONOSPHERIC/THERMOSPHERIC/MESOSPHERIC COUPLING, 1999, 24 (11): : 1491 - 1494
  • [30] Correlation distance of ionospheric total electron content in the Indian low latitude region
    Borah, Rashmi Rekha
    Bhuyan, K.
    Bhuyan, P. K.
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, 2008, 82 (05): : 545 - 550