The multivariate component zero-inflated Poisson model for correlated count data analysis
被引:1
|
作者:
Wu, Qin
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Dept Stat, Guangzhou 510631, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Dept Stat, Guangzhou 510631, Guangdong, Peoples R China
Wu, Qin
[1
]
Tian, Guo-Liang
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Dept Stat, Guangzhou 510631, Guangdong, Peoples R China
Tian, Guo-Liang
[2
]
Li, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Dept Stat, Guangzhou 510631, Guangdong, Peoples R China
Li, Tao
[2
]
Tang, Man-Lai
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hertfordshire, Sch Phys Engn & Comp Sci, Dept Phys Astron & Math, Hatfield, Herts, EnglandSouth China Normal Univ, Sch Math Sci, Dept Stat, Guangzhou 510631, Guangdong, Peoples R China
Tang, Man-Lai
[3
]
Zhang, Chi
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Econ, Shenzhen 518055, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Dept Stat, Guangzhou 510631, Guangdong, Peoples R China
Zhang, Chi
[4
]
机构:
[1] South China Normal Univ, Sch Math Sci, Dept Stat, Guangzhou 510631, Guangdong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Guangdong, Peoples R China
Multivariate zero-inflated Poisson (ZIP) distributions are important tools for modelling and analysing correlated count data with extra zeros. Unfortunately, existing multivariate ZIP distributions consider only the overall zero-inflation while the component zero-inflation is not well addressed. This paper proposes a flexible multivariate ZIP distribution, called the multivariate component ZIP distribution, in which both the overall and component zero-inflations are taken into account. Likelihood-based inference procedures including the calculation of maximum likelihood estimates of parameters in the model without and with covariates are provided. Simulation studies indicate that the performance of the proposed methods on the multivariate component ZIP model is satisfactory. The Australia health care utilisation data set is analysed to demonstrate that the new distribution is more appropriate than the existing multivariate ZIP distributions.
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Lim, Hwa Kyung
Li, Wai Keung
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Li, Wai Keung
Yu, Philip L. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Liu, Yin
Tian, Guo-Liang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China