Rhythmic cilia changes support SCN neuron coherence in circadian clock

被引:35
|
作者
Tu, Hai-Qing [1 ]
Li, Sen [1 ]
Xu, Yu-Ling [1 ]
Zhang, Yu-Cheng [1 ]
Li, Pei-Yao [1 ]
Liang, Li-Yun [1 ]
Song, Guang-Ping [1 ]
Jian, Xiao-Xiao [1 ]
Wu, Min [1 ]
Song, Zeng-Qing [1 ]
Li, Ting -Ting [1 ]
Hu, Huai -Bin [1 ]
Yuan, Jin-Feng [1 ]
Shen, Xiao-Lin [1 ]
Li, Jia-Ning [1 ]
Han, Qiu-Ying [1 ]
Wang, Kai [1 ]
Zhang, Tao [3 ]
Zhou, Tao [1 ]
Li, Ai -Ling [1 ,2 ]
Zhang, Xue-Min [1 ,2 ]
Li, Hui-Yan [1 ,2 ]
机构
[1] Natl Ctr Biomed Anal, Nanhu Lab, Beijing, Peoples R China
[2] Fudan Univ, Sch Basic Med Sci, Shanghai, Peoples R China
[3] Acad Mil Med Sci, Lab Anim Ctr, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSCRIPTIONAL ARCHITECTURE; SUPRACHIASMATIC NUCLEUS; SYNCHRONY; COMPONENT; DISEASE;
D O I
10.1126/science.abm1962
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S-producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling.
引用
收藏
页码:972 / 979
页数:8
相关论文
共 50 条
  • [11] Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
    Etchegaray, JP
    Lee, C
    Wade, PA
    Reppert, SM
    NATURE, 2003, 421 (6919) : 177 - 182
  • [12] A rhythmic placenta? Circadian variation, clock genes and placental function
    Waddell, B. J.
    Wharfe, M. D.
    Crew, R. C.
    Mark, P. J.
    PLACENTA, 2012, 33 (07) : 533 - 539
  • [13] Modeling the Emergence of Circadian Rhythms in a Clock Neuron Network
    Diambra, Luis
    Malta, Coraci P.
    PLOS ONE, 2012, 7 (03):
  • [14] Prenatal exposure to lipopolysaccharide induces changes in the circadian clock in the SCN and AA-NAT activity in the pineal gland
    Spisska, Veronika
    Pacesova, Dominika
    Mikova, Hana
    Pohanova, Petra
    Telensky, Petr
    Novotny, Jiri
    Bendova, Zdenka
    BRAIN RESEARCH, 2020, 1743
  • [15] Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators
    David Whitmore
    Nicholas S. Foulkes
    Uwe Strähle
    Paolo Sassone-Corsi
    Nature Neuroscience, 1998, 1 : 701 - 707
  • [16] Highly sensitive tryptophan fluorescence probe for detecting rhythmic conformational changes of KaiC in the cyanobacterial circadian clock system
    Mukaiyama, Atsushi
    Furuike, Yoshihiko
    Yamashita, Eiki
    Akiyama, Shuji
    BIOCHEMICAL JOURNAL, 2022, 479 (14) : 1505 - 1515
  • [17] Rhythmic Release of Corticosterone Induces Circadian Clock Gene Expression in the Cerebellum
    Bering, Tenna
    Hertz, Henrik
    Rath, Martin Fredensborg
    NEUROENDOCRINOLOGY, 2020, 110 (7-8) : 604 - 615
  • [18] Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators
    Whitmore, D
    Foulkes, NS
    Strahle, U
    Sassone-Corsi, P
    NATURE NEUROSCIENCE, 1998, 1 (08) : 701 - 707
  • [19] A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock
    Jin, XW
    Shearman, LP
    Weaver, DR
    Zylka, MJ
    De Vries, GJ
    Reppert, SM
    CELL, 1999, 96 (01) : 57 - 68
  • [20] Effect of metabolic changes on the circadian clock
    Szoke, A.
    Kaldi, K.
    Gyoengyoesi, N.
    ACTA PHYSIOLOGICA, 2014, 211 : 176 - 176