Weakly Zero Divisor Graph of a Lattice

被引:2
|
作者
Kulal, Vikas [1 ]
Khairnar, Anil [2 ]
Masalkar, Krishnat [2 ]
Kadam, Lata [2 ]
机构
[1] MIT Art Design & Technol Univ, Sch Engn & Sci, Dept Math, Pune 412201, Maharastra, India
[2] Abasaheb Garware Coll, Dept Math, Pune 411004, Maharastra, India
来源
关键词
Zero divisor graph; Base of the element; Atom; Planar;
D O I
10.26713/cma.v14i3.2455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a lattice L, we associate a graph WZG(L) called a weakly zero divisor graph of L. The vertex set of WZG(L) is Z *(L), where Z*(L) = {r is an element of L | r not equal 0, there exists s not equal 0 such that r <^> s = 0} and for any distinct u and v in Z*(L), u- v is an edge in WZG(L) if and only if there exists p is an element of Ann(u)\{0} and q is an element of Ann(v)\{0} such that p <^> q = 0. In this paper, we determined the diameter, girth, independence number and domination number of WZG(L). We characterized all lattices whose WZG(L) is complete bipartite or planar. Also, we find a condition so that WZG(L) is Eulerian or Hamiltonian. Finally, we study the affinity between the weakly zero divisor graph, the zero divisor graph and the annihilatorideal graph of lattices.
引用
收藏
页码:1167 / 1180
页数:14
相关论文
共 50 条
  • [41] A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES
    Nozari, Katayoun
    Payrovi, Shiroyeh
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2019, 106 (120): : 39 - 46
  • [42] The zero-divisor graph of a commutative semigroup
    DeMeyer, FR
    McKenzie, T
    Schneider, K
    SEMIGROUP FORUM, 2002, 65 (02) : 206 - 214
  • [43] THE ZERO-DIVISOR GRAPH ASSOCIATED TO A SEMIGROUP
    DeMeyer, Lisa
    Greve, Larisa
    Sabbaghi, Arman
    Wang, Jonathan
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (09) : 3370 - 3391
  • [44] Decomposition of zero divisor graph into cycles and stars
    Kuppan, A.
    Sankar, J. Ravi
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2023, 35 (01)
  • [45] The zero-divisor graph of an amalgamated algebra
    Azimi, Y.
    Doustimehr, M. R.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1213 - 1225
  • [46] Zero-divisor graph of C(X)
    Azarpanah, F
    Motamedi, M
    ACTA MATHEMATICA HUNGARICA, 2005, 108 (1-2) : 25 - 36
  • [47] The zero-divisor graph of a reduced ring
    Samei, Karim
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) : 813 - 821
  • [48] On zero-divisor graph of the ring Fp
    Annamalai, N.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 151 - 163
  • [49] The zero-divisor graph of a ring with involution
    Patil, Avinash
    Waphare, B. N.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (03)
  • [50] The Zero-divisor Graph of Zn[X]]
    Park, Min Ji
    Kim, Eun Sup
    Lim, Jung Wook
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (04): : 723 - 729